(* ========================================================================== *)
(* FLYSPECK - BOOK FORMALIZATION *)
(* *)
(* Chapter: Tame Hypermap *)
(* Author: Alexey Solovyev *)
(* Date: 2010-07-07 *)
(* (V,ESTD V) is a fan (4-point case) *)
(* ========================================================================== *)
module Gmlwkpk = struct
open Fan;;
let AFF_GE_1_2_0 = prove
(`!v w.
~(v =
vec 0) /\ ~(w =
vec 0)
==> aff_ge {
vec 0} {v,w} = {a % v + b % w | &0 <= a /\ &0 <= b}`,
SIMP_TAC[Fan.AFF_GE_1_2;
SET_RULE `
DISJOINT {a} {b,c} <=> ~(b = a) /\ ~(c = a)`] THEN
REWRITE_TAC[
VECTOR_MUL_RZERO;
VECTOR_ADD_LID] THEN
ONCE_REWRITE_TAC[MESON[]
`(?a b c. P b c /\ Q b c /\ R a b c /\ S b c) <=>
(?b c. P b c /\ Q b c /\ S b c /\ ?a. R a b c)`] THEN
REWRITE_TAC[REAL_ARITH `t + s:real = &1 <=> t = &1 - s`;
EXISTS_REFL] THEN
SET_TAC[]);;
let GMLWKPK = prove
(`!x:real^N V E.
graph E
==> (fan7(x,V,E) <=>
!e1 e2. e1
IN E
UNION {{v} | v
IN V} /\
e2
IN E
UNION {{v} | v
IN V}
==> (e1
INTER e2 = {}
==> aff_ge {x} e1
INTER aff_ge {x} e2 = {x}) /\
(!v. e1
INTER e2 = {v}
==> aff_ge {x} e1
INTER aff_ge {x} e2 =
aff_ge {x} {v}))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[Fan.fan7] THEN EQ_TAC THENL
[SIMP_TAC[
AFF_GE_EQ_AFFINE_HULL;
AFFINE_HULL_SING]; ALL_TAC] THEN
MATCH_MP_TAC
MONO_FORALL THEN X_GEN_TAC `e1:real^N->bool` THEN
MATCH_MP_TAC
MONO_FORALL THEN X_GEN_TAC `e2:real^N->bool` THEN
MATCH_MP_TAC(TAUT `(p ==> q ==> r) ==> (q ==> p) ==> q ==> r`) THEN
STRIP_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `e1 = e2 \/ e1
INTER e2 = {} \/ (?v:real^N. e1
INTER e2 = {v})`
MP_TAC THENL
[ALL_TAC;
STRIP_TAC THEN ASM_REWRITE_TAC[
INTER_IDEMPOT] THEN
ASM_MESON_TAC[
AFF_GE_EQ_AFFINE_HULL;
AFFINE_HULL_SING]] THEN
SUBGOAL_THEN `?a b:real^N c d:real^N. e1 = {a,b} /\ e2 = {c,d}` MP_TAC THENL
[ALL_TAC;
DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN
SET_TAC[]] THEN
FIRST_ASSUM(CONJUNCTS_THEN MP_TAC) THEN
REWRITE_TAC[
IN_UNION;
IN_ELIM_THM] THEN
SUBGOAL_THEN `!e:real^N->bool. e
IN E ==> ?v w. ~(v = w) /\ e = {v,w}`
(LABEL_TAC "*") THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
graph]) THEN
MATCH_MP_TAC
MONO_FORALL THEN GEN_TAC THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[
IN] THEN
CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[];
ASM_MESON_TAC[SET_RULE `{v,v} = {v}`]]);;
let GMLWKPK_ALT = prove
(`!x:real^N V E.
graph E /\ (!e. e
IN E ==> ~(x
IN e))
==> (fan7(x,V,E) <=>
(!e1 e2. e1
IN E
UNION {{v} | v
IN V} /\
e2
IN E
UNION {{v} | v
IN V} /\
e1
INTER e2 = {}
==> aff_ge {x} e1
INTER aff_ge {x} e2 = {x}) /\
(!e1 e2 v. e1
IN E /\ e2
IN E /\ e1
INTER e2 = {v}
==> aff_ge {x} e1
INTER aff_ge {x} e2 =
aff_ge {x} {v}))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[
GMLWKPK] THEN
EQ_TAC THEN SIMP_TAC[
IN_UNION] THEN STRIP_TAC THEN
MATCH_MP_TAC(MESON[]
`(!x y. R x y ==> R y x) /\
(!x y. P x /\ P y ==> R x y) /\
(!x y. Q x /\ Q y ==> R x y) /\
(!x y. P x /\ Q y ==> R x y)
==> !x y. (P x \/ Q x) /\ (P y \/ Q y) ==> R x y`) THEN
CONJ_TAC THENL [REWRITE_TAC[
INTER_ACI]; ASM_SIMP_TAC[]] THEN CONJ_TAC THEN
REWRITE_TAC[
IMP_CONJ;
RIGHT_FORALL_IMP_THM;
FORALL_IN_GSPEC] THENL
[SIMP_TAC[SET_RULE `{a}
INTER {b} = {c} <=> a = c /\ b = c`] THEN SET_TAC[];
X_GEN_TAC `e1:real^N->bool` THEN DISCH_TAC THEN X_GEN_TAC `v:real^N`] THEN
SUBGOAL_THEN `(e1:real^N->bool)
HAS_SIZE 2` MP_TAC THENL
[ASM_MESON_TAC[
graph;
IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN
REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `w:real^N`] THEN
STRIP_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SET_RULE `{a,b}
INTER {c} = {d} <=> d = c /\ (a = c \/ b = c)`] THEN
REWRITE_TAC[SET_RULE `s
INTER t = t <=> t
SUBSET s`] THEN
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
AFF_GE_MONO_RIGHT THEN ASM SET_TAC[]);;
let GMLWKPK_SIMPLE = prove
(`!E V x:real^N.
UNIONS E
SUBSET V /\
graph E /\ fan6(x,V,E) /\
(!e. e
IN E ==> ~(x
IN e))
==> (fan7 (x,V,E) <=>
!e1 e2.
e1
IN E
UNION {{v} | v
IN V} /\ e2
IN E
UNION {{v} | v
IN V} /\
e1
INTER e2 = {}
==> aff_ge {x} e1
INTER aff_ge {x} e2 = {x})`,
let lemma = prove
(`!x u v w:real^N.
~collinear{x,u,v} /\ ~collinear{x,v,w}
==> (~(aff_ge {x} {u,v} INTER aff_ge {x} {v,w} =
aff_ge {x} {v}) <=>
u IN aff_ge {x} {v,w} \/ w IN aff_ge {x} {u,v})`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `x:real^N` THEN
REPEAT GEN_TAC THEN
MAP_EVERY (fun t ->
ASM_CASES_TAC t THENL
[ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC]; ALL_TAC])
[`u:real^N = v`; `w:real^N = v`;
`u:real^N = vec 0`; `v:real^N = vec 0`; `w:real^N = vec 0`] THEN
STRIP_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
`~(s INTER s' = t)
==> t SUBSET s /\ t SUBSET s' ==> t PSUBSET s INTER s'`)) THEN
ANTS_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC AFF_GE_MONO_RIGHT THEN ASM SET_TAC[];
REWRITE_TAC[PSUBSET_ALT]] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[IN_INTER; IMP_CONJ; FORALL_IN_GSPEC] THEN
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN
DISCH_TAC THEN DISCH_TAC THEN
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`c:real`; `d:real`] THEN STRIP_TAC THEN
ASM_CASES_TAC `a = &0` THENL
[ASM_MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID]; ALL_TAC] THEN
ASM_CASES_TAC `d = &0` THENL
[ASM_MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID]; ALL_TAC] THEN
DISCH_THEN(K ALL_TAC) THEN DISJ_CASES_TAC
(REAL_ARITH `b <= c \/ c <= b`)
THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP (VECTOR_ARITH
`a % u + b % v:real^N = c % v + d % w
==> a % u = (c - b) % v + d % w`)) THEN
DISCH_THEN(MP_TAC o AP_TERM `(%) (inv a):real^N->real^N`) THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID] THEN
DISCH_THEN(K ALL_TAC) THEN DISJ1_TAC THEN
REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN
MAP_EVERY EXISTS_TAC [`inv a * (c - b):real`; `inv a * d:real`] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_SUB_LE];
FIRST_X_ASSUM(MP_TAC o MATCH_MP (VECTOR_ARITH
`a % u + b % v:real^N = c % v + d % w
==> d % w = (b - c) % v + a % u`)) THEN
DISCH_THEN(MP_TAC o AP_TERM `(%) (inv d):real^N->real^N`) THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID] THEN
DISCH_THEN(K ALL_TAC) THEN DISJ2_TAC THEN
REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN
MAP_EVERY EXISTS_TAC [`inv d * a:real`; `inv d * (b - c):real`] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_SUB_LE] THEN
REWRITE_TAC[VECTOR_ADD_SYM]];
STRIP_TAC THEN MATCH_MP_TAC(SET_RULE
`(?x. x IN s /\ x IN t /\ ~(x IN u)) ==> ~(s INTER t = u)`)
THENL
[EXISTS_TAC `u:real^N` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; IN_ELIM_THM] THEN
CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`&1`; `&0`] THEN
REWRITE_TAC[REAL_POS] THEN VECTOR_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `a:real`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
UNDISCH_TAC `~collinear{vec 0:real^N,a % v,v}` THEN
REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN
REWRITE_TAC[COLLINEAR_LEMMA] THEN MESON_TAC[]];
EXISTS_TAC `w:real^N` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; IN_ELIM_THM] THEN
CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN
REWRITE_TAC[REAL_POS] THEN VECTOR_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `a:real`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
UNDISCH_TAC `~collinear{vec 0:real^N,v,a % v}` THEN
REWRITE_TAC[COLLINEAR_LEMMA] THEN MESON_TAC[]]]]) in
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GMLWKPK] THEN
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN
REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC(MESON[]
`(!x y. R x y ==> R y x) /\
(!x. Q x ==> !y. Q y ==> R x y) /\
(!x. P x ==> (!y. Q y ==> R x y) /\ (!y. P y ==> R x y))
==> (!x y. (P x \/ Q x) /\ (P y \/ Q y) ==> R x y)`) THEN
CONJ_TAC THENL [SIMP_TAC[INTER_ACI]; ALL_TAC] THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN CONJ_TAC THENL
[SIMP_TAC[SET_RULE `{a} INTER {b} = {c} <=> c = a /\ b = a`] THEN
REWRITE_TAC[INTER_IDEMPOT];
ALL_TAC] THEN
X_GEN_TAC `ee1:real^N->bool` THEN DISCH_TAC THEN CONJ_TAC THENL
[X_GEN_TAC `v:real^N` THEN DISCH_TAC THEN
REWRITE_TAC[SET_RULE `s INTER {a} = {b} <=> b = a /\ a IN s`] THEN
SIMP_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN DISCH_TAC THEN
REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN
MATCH_MP_TAC AFF_GE_MONO_RIGHT THEN ASM SET_TAC[];
ALL_TAC] THEN
X_GEN_TAC `ee2:real^N->bool` THEN DISCH_TAC THEN
SUBGOAL_THEN `(ee1:real^N->bool) HAS_SIZE 2` MP_TAC THENL
[ASM_MESON_TAC[graph; IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`v1:real^N`; `w1:real^N`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN
SUBGOAL_THEN `(ee2:real^N->bool) HAS_SIZE 2` MP_TAC THENL
[ASM_MESON_TAC[graph; IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`v2:real^N`; `w2:real^N`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN
ONCE_REWRITE_TAC[SET_RULE
`{a,b} INTER {c,d} = {v} <=>
v = a /\ {a,b} INTER {c,d} = {v} \/
v = b /\ {a,b} INTER {c,d} = {v}`] THEN
REWRITE_TAC[TAUT
`p /\ q \/ r /\ q ==> t <=> (p ==> q ==> t) /\ (r ==> q ==> t)`] THEN
REWRITE_TAC[FORALL_AND_THM; FORALL_UNWIND_THM2] THEN
MAP_EVERY UNDISCH_TAC [`{v1:real^N,w1} IN E`; `~(v1:real^N = w1)`] THEN
MAP_EVERY (fun s -> SPEC_TAC(s,s))
[`w1:real^N`; `v1:real^N`] THEN
REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC(MESON[]
`(!v w. P v w ==> P w v) /\
(!v w. R v w ==> Q w v) /\
(!v w. P v w ==> R v w)
==> (!v w. P v w ==> Q v w /\ R v w)`) THEN
REPEAT(CONJ_TAC THENL [SIMP_TAC[INSERT_AC]; ALL_TAC]) THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[SET_RULE
`{a,b} INTER {c,d} = {v} <=>
v = c /\ {a,b} INTER {c,d} = {v} \/
v = d /\ {a,b} INTER {c,d} = {v}`] THEN
REWRITE_TAC[TAUT
`p /\ q \/ r /\ q ==> t <=> (p ==> q ==> t) /\ (r ==> q ==> t)`] THEN
MAP_EVERY UNDISCH_TAC [`{v2:real^N,w2} IN E`; `~(v2:real^N = w2)`] THEN
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`w2:real^N`; `v2:real^N`] THEN
REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC(MESON[]
`(!v w. P v w ==> P w v) /\
(!v w. Q v w ==> R w v) /\
(!v w. P v w ==> Q v w)
==> (!v w. P v w ==> Q v w /\ R v w)`) THEN
REPEAT(CONJ_TAC THENL [SIMP_TAC[INSERT_AC]; ALL_TAC]) THEN
MAP_EVERY X_GEN_TAC [`v':real^N`; `w:real^N`] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_CASES_TAC `u:real^N = w` THENL [ASM SET_TAC[]; ALL_TAC] THEN
DISCH_TAC THEN W(MP_TAC o PART_MATCH (rand o lhand o rand) lemma o goal_concl) THEN
ANTS_TAC THENL
[REWRITE_TAC[SET_RULE `{x,v,w} = {x} UNION {v,w}`] THEN
ASM_MESON_TAC[fan6; INSERT_AC];
ALL_TAC] THEN
MATCH_MP_TAC(TAUT `~q ==> (~p <=> q) ==> p`) THEN
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE
`aff_ge {x} {v} INTER aff_ge {x} s = {x} /\
v IN aff_ge {x} {v} /\ ~(v = x)
==> ~(v IN aff_ge {x} s)`) THEN
REPEAT CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_UNION] THEN
CONJ_TAC THENL [DISJ2_TAC; ASM SET_TAC[]] THEN
REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `u:real^N` THEN
REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[IN_UNIONS] THEN EXISTS_TAC `{u:real^N,v}` THEN
ASM SET_TAC[];
SUBGOAL_THEN `DISJOINT {x:real^N} {u:real^N}` ASSUME_TAC THENL
[REWRITE_TAC[SET_RULE `DISJOINT {a} {b} <=> ~(a = b)`] THEN
ASM_MESON_TAC[IN_INSERT];
ASM_SIMP_TAC[Fan.AFF_GE_1_1; IN_ELIM_THM] THEN
MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN
REPEAT(CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC]) THEN VECTOR_ARITH_TAC];
ASM_MESON_TAC[IN_INSERT];
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_UNION] THEN
CONJ_TAC THENL [DISJ2_TAC; ASM SET_TAC[]] THEN
REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `w:real^N` THEN
REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[IN_UNIONS] THEN EXISTS_TAC `{v:real^N,w}` THEN
ASM SET_TAC[];
SUBGOAL_THEN `DISJOINT {x:real^N} {w:real^N}` ASSUME_TAC THENL
[REWRITE_TAC[SET_RULE `DISJOINT {a} {b} <=> ~(a = b)`] THEN
ASM_MESON_TAC[IN_INSERT];
ASM_SIMP_TAC[Fan.AFF_GE_1_1; IN_ELIM_THM] THEN
MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN
REPEAT(CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC]) THEN VECTOR_ARITH_TAC];
ASM_MESON_TAC[IN_INSERT]]);;
end;;