(* ========================================================================= *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Authour : VU KHAC KY *) (* Book lemma: KIZHLTL *) (* Chaper : Packing (Marchal cells) *) (* *) (* ========================================================================= *) (* KIZHLTL1 *) (* ======================================================================== *) module Kizhltl = struct open Sphere;; open Euler_main_theorem;; open Pack_defs;; open Pack_concl;; open Pack1;; open Pack2;; open Packing3;; open Rogers;; open Vukhacky_tactics;; open Marchal_cells;; open Emnwuus;; (* open Marchal_cells_2;; *) open Marchal_cells_2_new;; open Urrphbz1;; open Lepjbdj;; open Hdtfnfz;; open Rvfxzbu;; open Sltstlo;; open Urrphbz2;; open Urrphbz3;; open Ynhyjit;; open Njiutiu;; open Tezffsk;; open Qzksykg;; open Ddzuphj;; open Ajripqn;; open Qzyzmjc;; open Upfzbzm_support_lemmas;; open Marchal_cells_3;; open Grutoti;;(* ======================================================================== *) (* KIZHLTL2 *) (* ======================================================================== *)let KIZHLTL1 = prove_by_refinement (KIZHLTL1_concl, [(GEN_TAC); (ASM_CASES_TAC `saturated V /\ packing (V:real^3->bool)`); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `!r. &1 <= r ==> sum {X | X SUBSET ball (vec 0,r) /\ mcell_set V X} vol <= vol (ball (vec 0, r))`); (REPEAT STRIP_TAC); (ABBREV_TAC `S = {X | X SUBSET ball (vec 0,r) /\ mcell_set V X}`); (REWRITE_WITH `sum S vol = vol (UNIONS S)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNIONS); (REPEAT STRIP_TAC); (EXPAND_TAC "S"); (ASM_SIMP_TAC[FINITE_MCELL_SET_LEMMA]); (REWRITE_TAC[GSYM HAS_MEASURE_MEASURE]); (UP_ASM_TAC THEN EXPAND_TAC "S" THEN REWRITE_TAC[IN;IN_ELIM_THM]); (REWRITE_TAC[mcell_set; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC MEASURABLE_MCELL); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[IN]); (ASM_CASES_TAC `~NULLSET (s INTER t)`); (NEW_GOAL `F`); (UNDISCH_TAC `s:real^3->bool IN S` THEN UNDISCH_TAC `t:real^3->bool IN S`); (EXPAND_TAC "S" THEN REWRITE_TAC[IN;IN_ELIM_THM]); (REWRITE_TAC[mcell_set; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (NEW_GOAL `s = t:real^3->bool`); (REWRITE_TAC[ASSUME `t = mcell i V ul`; ASSUME `s = mcell i' V ul'`]); (ABBREV_TAC `j = if i <= 4 then i else 4`); (ABBREV_TAC `j' = if i' <= 4 then i' else 4`); (REWRITE_WITH `mcell i V ul = mcell j V ul`); (EXPAND_TAC "j" THEN COND_CASES_TAC); (REFL_TAC); (ASM_SIMP_TAC[ARITH_RULE `~(i <= 4) ==> i >= 4`; ARITH_RULE `4 >= 4`; MCELL_EXPLICIT]); (REWRITE_WITH `mcell i' V ul' = mcell j' V ul'`); (EXPAND_TAC "j'" THEN COND_CASES_TAC); (REFL_TAC); (ASM_SIMP_TAC[ARITH_RULE `~(i <= 4) ==> i >= 4`; ARITH_RULE `4 >= 4`; MCELL_EXPLICIT]); (REWRITE_WITH `j' = j /\ mcell j' V ul' = mcell j V ul`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[IN]); (ASM_MESON_TAC[IN]); (EXPAND_TAC "j'" THEN COND_CASES_TAC); (UP_ASM_TAC THEN REWRITE_TAC[ARITH_RULE `i <= 4 <=> i=0\/i=1\/i=2\/i=3\/i=4`] THEN SET_TAC[]); (SET_TAC[]); (EXPAND_TAC "j" THEN COND_CASES_TAC); (UP_ASM_TAC THEN REWRITE_TAC[ARITH_RULE `i <= 4 <=> i=0\/i=1\/i=2\/i=3\/i=4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC); (REWRITE_WITH `mcell j V ul = mcell i V ul`); (EXPAND_TAC "j" THEN COND_CASES_TAC); (REFL_TAC); (ASM_SIMP_TAC[ARITH_RULE `~(i <= 4) ==> i >= 4`; ARITH_RULE `4 >= 4`; MCELL_EXPLICIT]); (REWRITE_WITH `mcell j' V ul' = mcell i' V ul'`); (EXPAND_TAC "j'" THEN COND_CASES_TAC); (REFL_TAC); (ASM_SIMP_TAC[ARITH_RULE `~(i <= 4) ==> i >= 4`; ARITH_RULE `4 >= 4`; MCELL_EXPLICIT]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (MATCH_MP_TAC MEASURE_SUBSET); (REWRITE_TAC[MEASURABLE_BALL]); (REPEAT STRIP_TAC); (EXPAND_TAC "S" THEN MATCH_MP_TAC MEASURABLE_UNIONS); (REPEAT STRIP_TAC); (ASM_SIMP_TAC[FINITE_MCELL_SET_LEMMA]); (UP_ASM_TAC THEN REWRITE_TAC[IN;IN_ELIM_THM; mcell_set]); (REPEAT STRIP_TAC); (ASM_SIMP_TAC[MEASURABLE_MCELL]); (EXPAND_TAC "S" THEN SET_TAC[]); (* ----------------------------------------------------------------------- *) (NEW_GOAL `?c. !r. &1 <= r ==> vol (ball (vec 0, r)) + c * r pow 2 <= sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u))`); (EXISTS_TAC `-- (&24 / &3) * pi`); (REPEAT STRIP_TAC); (ASM_CASES_TAC `r < &6`); (NEW_GOAL `&0 <= sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u))`); (MATCH_MP_TAC SUM_POS_LE); (ASM_SIMP_TAC[Packing3.KIUMVTC]); (REPEAT STRIP_TAC); (MATCH_MP_TAC MEASURE_POS_LE); (ASM_SIMP_TAC[Pack1.measurable_voronoi]); (NEW_GOAL `vol (ball ((vec 0):real^3,r)) + (--(&24 / &3) * pi) * r pow 2 <= &0`); (REWRITE_TAC[REAL_ARITH `a + (--b * c) * d <= &0 <=> a <= b * c * d`]); (ASM_SIMP_TAC [VOLUME_BALL; REAL_ARITH `&1 <= r ==> &0 <= r`]); (REWRITE_TAC[REAL_ARITH `&4 / &3 * pi * r pow 3 <= &24 / &3 * pi * r pow 2 <=> &0 <= &4 / &3 * pi * r pow 2 * (&6 - r)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_DIV THEN REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[PI_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[REAL_LE_POW_2]); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (NEW_GOAL `vol (ball (vec 0,r - &2)) <= sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u))`); (REWRITE_WITH `sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u)) = sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_closed V u))`); (MATCH_MP_TAC SUM_EQ); (REPEAT STRIP_TAC); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[GSYM Pack2.MEASURE_VORONOI_CLOSED_OPEN]); (ABBREV_TAC `S:real^3->bool = V INTER ball (vec 0, r)`); (ABBREV_TAC `g = (\t:real^3. voronoi_closed V t)`); (REWRITE_WITH `sum S (\u:real^3. vol (voronoi_closed V u)) = sum S (\t. vol (g t))`); (EXPAND_TAC "g" THEN REWRITE_TAC[]); (REWRITE_WITH `sum S (\t:real^3. vol (g t)) = measure (UNIONS (IMAGE g S))`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNIONS_IMAGE); (ASM_REWRITE_TAC[] THEN EXPAND_TAC "g"); (REPEAT STRIP_TAC); (EXPAND_TAC "S"); (ASM_SIMP_TAC[Packing3.KIUMVTC]); (MATCH_MP_TAC Pack2.MEASURABLE_VORONOI_CLOSED); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC Pack2.NEGLIGIBLE_INTER_VORONOI_CLOSED); (ASM_SET_TAC[]); (EXPAND_TAC "g" THEN REWRITE_TAC[IMAGE]); (MATCH_MP_TAC MEASURE_SUBSET); (REWRITE_TAC[MEASURABLE_BALL]); (REPEAT STRIP_TAC); (MATCH_MP_TAC MEASURABLE_UNIONS); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (EXPAND_TAC "S"); (ASM_SIMP_TAC[Packing3.KIUMVTC]); (REWRITE_TAC[IN; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC Pack2.MEASURABLE_VORONOI_CLOSED); (ASM_REWRITE_TAC[]); (REWRITE_TAC[SUBSET; IN_BALL; IN_UNIONS]); (REPEAT STRIP_TAC); (MP_TAC (ASSUME `saturated (V:real^3->bool)`)); (REWRITE_TAC[saturated] THEN STRIP_TAC); (NEW_GOAL `?y. y IN V /\ dist (x:real^3,y) < &2`); (ASM_MESON_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `?v:real^3. v IN V /\ x IN voronoi_closed V v`); (MATCH_MP_TAC Packing3.TIWWFYQ); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `voronoi_closed V (v:real^3)`); (ASM_REWRITE_TAC[]); (ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (EXISTS_TAC `v:real^3`); (STRIP_TAC); (EXPAND_TAC "S" THEN REWRITE_TAC[IN_INTER]); (ASM_REWRITE_TAC[IN_BALL]); (NEW_GOAL `dist (vec 0,v) <= dist (vec 0,x) + dist (x, v:real^3)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x, v:real^3) < &2`); (NEW_GOAL `dist (x, v) <= dist (x, y:real^3)`); (UNDISCH_TAC `x:real^3 IN voronoi_closed V v`); (REWRITE_TAC[IN; voronoi_closed; IN_ELIM_THM]); (STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (REFL_TAC); (NEW_GOAL `vol (ball (vec 0,r)) + (--(&24 / &3) * pi) * r pow 2 <= vol (ball (vec 0,r - &2))`); (ASM_SIMP_TAC[VOLUME_BALL; REAL_ARITH `~(r < &6) ==> &0 <= r`; REAL_ARITH `~(r < &6) ==> &0 <= (r - &2)` ]); (REWRITE_TAC[REAL_ARITH `&4 / &3 * pi * r pow 3 + (--(&24 / &3) * pi) * r pow 2 <= &4 / &3 * pi * (r - &2) pow 3 <=> &0 <= &4 / &3 * pi * (&12 * r - &8)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_DIV THEN REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (REWRITE_TAC[PI_POS_LE]); (NEW_GOAL `&12 * r >= &72`); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `c:real`); (REPEAT STRIP_TAC); (NEW_GOAL `sum {X | X SUBSET ball (vec 0,r) /\ mcell_set V X} vol <= vol (ball (vec 0,r))`); (ASM_SIMP_TAC[]); (NEW_GOAL `vol (ball (vec 0,r)) + c * r pow 2 <= sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u))`); (ASM_SIMP_TAC[]); (ABBREV_TAC `a1 = sum {X | X SUBSET ball (vec 0,r) /\ mcell_set V X} vol`); (ABBREV_TAC `a2 = vol (ball ((vec 0):real^3,r))`); (ABBREV_TAC `a3 = sum (V INTER ball (vec 0,r)) (\u:real^3. vol (voronoi_open V u))`); (ASM_REAL_ARITH_TAC); (EXISTS_TAC `&0`); (REPEAT STRIP_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[])]);;(* ======================================================================== *) (* KIZHLTL4 *) (* ======================================================================== *) let KIZHLTL4_concl = `!V. ?c. !r. saturated V /\ packing V /\ &1 <= r ==> (&8 * mm2 / pi) * sum {X | X SUBSET ball (vec 0,r) /\ mcell_set V X} (\X. sum (edgeX V X) (\({u, v}). if {u, v} IN edgeX V X then dihX V X (u,v) * lmfun (hl [u; v]) else &0)) + c * r pow 2 <= &8 * mm2 * sum (V INTER ball (vec 0,r)) (\u. sum {v | v IN V /\ ~(u = v) /\ dist (u,v) <= &2 * h0} (\v. lmfun (hl [u; v])))`;;let KIZHLTL2 = prove_by_refinement (KIZHLTL2_concl, [(REPEAT STRIP_TAC); (ASM_CASES_TAC `saturated V /\ packing V`); (NEW_GOAL `?C. !r. &1 <= r ==> &(CARD (V INTER ball ((vec 0):real^3,r) DIFF V INTER ball (vec 0,r - &8))) <= C * r pow 2`); (REWRITE_WITH `!r p. V INTER ball (p:real^3,r) DIFF V INTER ball (p,r - &8) = V INTER ball (p:real^3,r + &0) DIFF V INTER ball (p,r - &8)`); (ASM_REWRITE_TAC[REAL_ARITH `a + &0 = a`]); (ASM_SIMP_TAC[PACKING_BALL_BOUNDARY]); (TAKE_TAC); (EXISTS_TAC `(&2 * mm1 / pi) * (&4 * pi) * (--C)`); (REPEAT STRIP_TAC); (NEW_GOAL `&(CARD (V INTER ball ((vec 0):real^3,r) DIFF V INTER ball (vec 0,r - &8))) <= C * r pow 2`); (ASM_SIMP_TAC[]); (NEW_GOAL `total_solid V = (\X. total_solid V X)`); (REWRITE_TAC[GSYM ETA_AX]); (ONCE_ASM_REWRITE_TAC[] THEN DEL_TAC); (REWRITE_TAC[total_solid]); (ABBREV_TAC `B = {X | X SUBSET ball (vec 0,r) /\ mcell_set V X}`); (NEW_GOAL `FINITE (B:(real^3->bool) ->bool)`); (EXPAND_TAC "B" THEN MATCH_MP_TAC FINITE_MCELL_SET_LEMMA); (ASM_REWRITE_TAC[]); (ABBREV_TAC `A1:real^3->bool = V INTER ball (vec 0,r)`); (ABBREV_TAC `A2:real^3->bool = V INTER ball (vec 0,r - &8)`); (NEW_GOAL `FINITE (A1:real^3->bool)`); (EXPAND_TAC "A1" THEN MATCH_MP_TAC FINITE_PACK_LEMMA); (ASM_REWRITE_TAC[]); (NEW_GOAL `FINITE (A2:real^3->bool)`); (EXPAND_TAC "A2" THEN MATCH_MP_TAC FINITE_PACK_LEMMA); (ASM_REWRITE_TAC[]); (NEW_GOAL `sum B (\X. sum {u | u IN A2 /\ VX V X u} (\u. sol u X)) <= sum B (\X. sum (VX V X) (\x. sol x X))`); (MATCH_MP_TAC SUM_LE); (ASM_REWRITE_TAC[BETA_THM]); (REPEAT STRIP_TAC); (MATCH_MP_TAC SUM_SUBSET_SIMPLE); (REPEAT STRIP_TAC); (REWRITE_TAC[VX] THEN COND_CASES_TAC); (REWRITE_TAC[FINITE_EMPTY]); (LET_TAC); (COND_CASES_TAC); (REWRITE_TAC[FINITE_EMPTY]); (REWRITE_TAC[FINITE_SET_OF_LIST]); (SET_TAC[]); (REWRITE_TAC[BETA_THM]); (UNDISCH_TAC `x:real^3->bool IN B`); (EXPAND_TAC "B" THEN REWRITE_TAC[IN; IN_ELIM_THM; mcell_set_2]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `eventually_radial x' (mcell i V ul)`); (MATCH_MP_TAC Urrphbz2.URRPHBZ2); (ASM_REWRITE_TAC[]); (SUBGOAL_THEN `x' IN (VX V x)` MP_TAC); (ASM_SET_TAC[]); (REWRITE_TAC[VX]); (COND_CASES_TAC); (SET_TAC[]); (LET_TAC); (COND_CASES_TAC); (SET_TAC[]); (STRIP_TAC); (UNDISCH_TAC `cell_params V x = k,ul'`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[cell_params]); (ABBREV_TAC `P = (\(k,ul). k <= 4 /\ ul IN barV V 3 /\ x = mcell k V ul)`); (DISCH_TAC); (NEW_GOAL `(P:(num#(real^3)list->bool)) (k,ul')`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(i:num,ul:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "P" THEN REWRITE_TAC[BETA_THM] THEN STRIP_TAC); (NEW_GOAL `set_of_list (truncate_simplex (k - 1) ul') SUBSET V:real^3->bool`); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `k - 1`); (MATCH_MP_TAC Packing3.TRUNCATE_SIMPLEX_BARV); (EXISTS_TAC `3`); (STRIP_TAC); (ASM_SET_TAC[]); (ASM_ARITH_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[eventually_radial]); (REPEAT STRIP_TAC); (REWRITE_WITH `sol x' (mcell i V ul) = &3 * vol ((mcell i V ul) INTER normball x' r') / r' pow 3`); (MATCH_MP_TAC sol); (ASM_REWRITE_TAC[GSYM Marchal_cells_2_new.RADIAL_VS_RADIAL_NORM; NORMBALL_BALL]); (MATCH_MP_TAC MEASURABLE_INTER); (ASM_SIMP_TAC[MEASURABLE_BALL; MEASURABLE_MCELL]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[REAL_ARITH `&0 <= &3`] THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (MATCH_MP_TAC MEASURE_POS_LE); (MATCH_MP_TAC MEASURABLE_INTER); (ASM_SIMP_TAC[MEASURABLE_BALL; NORMBALL_BALL; MEASURABLE_MCELL]); (MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC); (* ------------------------------------------------------------------------- *) (NEW_GOAL `sum B (\X. sum {u | u IN A2 /\ VX V X u} (\u. sol u X)) = sum A2 (\u. sum {X | X IN B /\ VX V X u} (\X. sol u X))`); (MATCH_MP_TAC SUM_SUM_RESTRICT); (ASM_REWRITE_TAC[]); (NEW_GOAL `sum A2 (\u. sum {X | X IN B /\ VX V X u} (\X. sol u X)) = sum A2 (\u. sum {X | mcell_set V X /\ u IN VX V X} (\X. sol u X))`); (MATCH_MP_TAC SUM_EQ); (EXPAND_TAC "A2" THEN REWRITE_TAC[IN_INTER; IN_DIFF] THEN REWRITE_TAC[IN_BALL; IN; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (REWRITE_WITH `{X | B X /\ VX V X x} = {X | mcell_set V X /\ VX V X x}`); (REWRITE_TAC[SET_RULE `a = b <=> a SUBSET b /\ b SUBSET a`]); (STRIP_TAC); (EXPAND_TAC "B"); (SET_TAC[]); (REWRITE_WITH `!x:real^3->bool. B x <=> x IN B`); (REWRITE_TAC[IN]); (EXPAND_TAC "B" THEN REWRITE_TAC[SUBSET; IN_INTER; IN_DIFF] THEN REWRITE_TAC[IN_BALL; IN; IN_ELIM_THM]); (REWRITE_TAC[MESON[] `A /\ X /\ Y ==> (B /\ A) /\ X /\ Y <=> A /\ X /\ Y ==> B`]); (REPEAT STRIP_TAC); (NEW_GOAL `x IN VX V x'`); (ASM_REWRITE_TAC[IN]); (NEW_GOAL `~NULLSET x'`); (UNDISCH_TAC `x IN VX V x'` THEN REWRITE_TAC[VX] THEN COND_CASES_TAC); (SET_TAC[]); (MESON_TAC[]); (NEW_GOAL `dist (vec 0, x'':real^3) <= dist (vec 0, x) + dist (x, x'')`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `?p. x' SUBSET ball (p:real^3,&4)`); (MATCH_MP_TAC MCELL_SUBSET_BALL_4); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[SUBSET; IN_BALL] THEN STRIP_TAC); (NEW_GOAL `dist (x, x'':real^3) <= dist (x, p) + dist (p, x'')`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x, p:real^3) < &4`); (ONCE_REWRITE_TAC[DIST_SYM]); (FIRST_ASSUM MATCH_MP_TAC); (NEW_GOAL `VX V x' = V INTER x'`); (MATCH_MP_TAC Hdtfnfz.HDTFNFZ); (UNDISCH_TAC `mcell_set V x'` THEN REWRITE_TAC[mcell_set; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `ul:(real^3)list` THEN EXISTS_TAC `i:num`); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (ASM_SET_TAC[]); (NEW_GOAL `dist (p:real^3,x'') < &4`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[IN]); (ASM_REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (* ------------------------------------------------------------------------ *) (UP_ASM_TAC); (REWRITE_WITH `sum A2 (\u. sum {X | mcell_set V X /\ u IN VX V X} (\X. sol u X)) = sum A2 (\u. &4 * pi)`); (MATCH_MP_TAC SUM_EQ); (REWRITE_TAC[BETA_THM] THEN REPEAT STRIP_TAC); (MATCH_MP_TAC Qzyzmjc.QZYZMJC); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (ASM_SIMP_TAC[SUM_CONST]); (STRIP_TAC); (ABBREV_TAC `s1 = sum B (\X. sum (VX V X) (\x. sol x X))`); (NEW_GOAL `&(CARD (A2:real^3->bool)) * &4 * pi <= s1`); (ABBREV_TAC `s2 = sum B (\X. sum {u | u IN A2 /\ VX V X u} (\u. sol u X))`); (ABBREV_TAC `s3 = sum A2 (\u. sum {X | X IN B /\ VX V X u} (\X. sol u X))`); (ASM_REAL_ARITH_TAC); (NEW_GOAL `(&2 * mm1 / pi) * &(CARD (A2:real^3->bool)) * &4 * pi <= (&2 * mm1 / pi) * s1`); (REWRITE_TAC[REAL_ARITH `a * b <= a * c <=> &0 <= (c - b) * a`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (ASM_REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_DIV); (REWRITE_TAC[PI_POS_LE]); (NEW_GOAL `#1.012080 < mm1`); (REWRITE_TAC[Flyspeck_constants.bounds]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `&(CARD (A1:real^3->bool)) * &8 * mm1 + ((&2 * mm1 / pi) * (&4 * pi) * --C) * r pow 2 <= (&2 * mm1 / pi) * &(CARD (A2:real^3->bool)) * &4 * pi`); (REWRITE_TAC[REAL_ARITH `((&2 * mm1 / pi) * (&4 * pi) * --C) * r pow 2 = (--C * r pow 2) * (&8 * mm1) * (pi / pi)`]); (REWRITE_TAC[REAL_ARITH `(&2 * mm1 / pi) * &(CARD A2) * &4 * pi = &(CARD A2) * (&8 * mm1) * (pi / pi)`]); (REWRITE_WITH `pi / pi = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (MP_TAC PI_POS THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_MUL_RID; REAL_ARITH `a * b + c * b <= d * b <=> &0 <= (d - a - c) * b `]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= a - b - (--c * x) <=> b - a <= c * x`]); (NEW_GOAL `A2 SUBSET A1:real^3->bool`); (EXPAND_TAC "A1" THEN EXPAND_TAC "A2"); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> V INTER A SUBSET V INTER B`)); (MATCH_MP_TAC SUBSET_BALL); (REAL_ARITH_TAC); (REWRITE_WITH `&(CARD (A1:real^3->bool)) - &(CARD (A2:real^3->bool)) = &(CARD A1 - CARD A2)`); (MATCH_MP_TAC REAL_OF_NUM_SUB); (MATCH_MP_TAC CARD_SUBSET); (ASM_REWRITE_TAC[]); (REWRITE_WITH `CARD (A1:real^3->bool) - CARD (A2:real^3->bool) = CARD (A1 DIFF A2)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC CARD_DIFF); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC REAL_LE_MUL); (NEW_GOAL `#1.012080 < mm1`); (REWRITE_TAC[Flyspeck_constants.bounds]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (EXISTS_TAC `&0`); (REPEAT STRIP_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[])]);;(* ------ Finish the proof of KIZHLTL 1, KIZHLTL 2, KIZHLTL 4 -------- *) end;;let KIZHLTL4 = prove_by_refinement (KIZHLTL4_concl, [(REPEAT STRIP_TAC); (ASM_CASES_TAC `saturated V /\ packing V`); (ABBREV_TAC `c = &8 * mm2 * (&0)`); (EXISTS_TAC `c:real`); (* choose d later *) (* ------------------------------------------------------------------------- *) (REPEAT STRIP_TAC); (ABBREV_TAC `S1 = {X | X SUBSET ball (vec 0,r) /\ mcell_set V X}`); (ABBREV_TAC `V1:real^3->bool = V INTER ball (vec 0, r)`); (ABBREV_TAC `T1 = {{u,v:real^3} | u IN V1 /\ v IN V1}`); (NEW_GOAL `FINITE (S1:(real^3->bool)->bool)`); (EXPAND_TAC "S1"); (ASM_SIMP_TAC[FINITE_MCELL_SET_LEMMA]); (NEW_GOAL `FINITE (T1:(real^3->bool)->bool)`); (EXPAND_TAC "T1"); (REWRITE_TAC[GSYM set_of_list]); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `IMAGE (set_of_list) {[u; v:real^3] | u IN V1 /\ v IN V1}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE); (REWRITE_TAC[SET_RULE `{[u;v] | u IN s /\ v IN s} = {y | ?u0 u1. u0 IN s /\ u1 IN s /\ y = [u0; u1]}`]); (MATCH_MP_TAC FINITE_LIST_KY_LEMMA_2); (EXPAND_TAC "V1" THEN MATCH_MP_TAC Packing3.KIUMVTC); (ASM_REWRITE_TAC[]); (SET_TAC[]); (ABBREV_TAC `S2 = {X | X SUBSET ball (vec 0,r) /\ mcell_set V X /\ ~NULLSET X}`); (NEW_GOAL `FINITE (S2:(real^3->bool)->bool)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `S1:(real^3->bool)->bool`); (ASM_REWRITE_TAC[]); (EXPAND_TAC "S1" THEN EXPAND_TAC "S2" THEN SET_TAC[]); (ABBREV_TAC `g = (\X. (\({u, v}). if {u, v} IN edgeX V X then dihX V X (u,v) * lmfun (hl [u; v]) else &0))`); (REWRITE_WITH `sum S1 (\X. sum (edgeX V X) (\({u, v}). if {u, v} IN edgeX V X then dihX V X (u,v) * lmfun (hl [u; v]) else &0)) = sum S1 (\X. sum (edgeX V X) (\({u, v}). g X {u,v}))`); (MATCH_MP_TAC SUM_EQ); (EXPAND_TAC "S1" THEN REWRITE_TAC[IN_ELIM_THM; IN; mcell_set_2]); (REPEAT STRIP_TAC); (MATCH_MP_TAC SUM_EQ); (REWRITE_WITH `!x'. x' IN edgeX V x <=> ?u v. VX V x u /\ VX V x v /\ ~(u = v) /\ x' = {u, v}`); (REWRITE_TAC[IN; IN_ELIM_THM; edgeX]); (MESON_TAC[]); (REPEAT STRIP_TAC); (ABBREV_TAC `f_temp = (\u v. if edgeX V x {u, v} then dihX V x (u,v) * lmfun (hl [u; v]) else &0)`); (NEW_GOAL `!u v. (f_temp:real^3->real^3->real) u v = f_temp v u`); (EXPAND_TAC "f_temp" THEN REWRITE_TAC[BETA_THM]); (REWRITE_TAC[HL; set_of_list; SET_RULE `{a,b} = {b,a}`]); (REPEAT GEN_TAC THEN COND_CASES_TAC); (COND_CASES_TAC); (REWRITE_WITH `dihX V x (u',v') = dihX V x (v',u')`); (MATCH_MP_TAC DIHX_SYM); (ASM_REWRITE_TAC[IN; mcell_set; IN_ELIM_THM]); (EXISTS_TAC `i:num` THEN EXISTS_TAC `ul:(real^3)list` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REFL_TAC); (REWRITE_WITH `(\({u, v}). if edgeX V x {u, v} then dihX V x (u,v) * lmfun (hl [u; v]) else &0) = (\({u, v}). f_temp u v)`); (EXPAND_TAC "f_temp"); (REWRITE_TAC[]); (REWRITE_TAC[BETA_SET_2_THM; ASSUME `x' = {u,v:real^3}`]); (REWRITE_WITH `(\({u, v}). f_temp u v) {u, v} = (f_temp:real^3->real^3->real) u v`); (MATCH_MP_TAC BETA_PAIR_THM); (ASM_REWRITE_TAC[]); (REWRITE_WITH `(g:(real^3->bool)->(real^3->bool)->real) x = (\({u, v}). f_temp u v)`); (EXPAND_TAC "f_temp" THEN EXPAND_TAC "g" THEN REWRITE_TAC[IN]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC BETA_PAIR_THM); (ASM_REWRITE_TAC[]); (* ----------------------------------------------------------------------- *) (REWRITE_WITH `sum S1 (\X. sum (edgeX V X) (\({u, v}). g X {u, v})) = sum S1 (\X. sum (edgeX V X) (g X))`); (MATCH_MP_TAC SUM_EQ); (REWRITE_TAC[] THEN REPEAT STRIP_TAC); (MATCH_MP_TAC SUM_EQ); (REWRITE_TAC[edgeX; IN; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (ASM_REWRITE_TAC[BETA_SET_2_THM]); (REWRITE_WITH `sum S1 (\X. sum (edgeX V X) (g X)) = sum S2 (\X. sum (edgeX V X) (g X))`); (MATCH_MP_TAC SUM_SUPERSET); (STRIP_TAC); (EXPAND_TAC "S1" THEN EXPAND_TAC "S2" THEN SET_TAC[]); (EXPAND_TAC "S1" THEN EXPAND_TAC "S2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (MATCH_MP_TAC SUM_EQ_0); (REPEAT STRIP_TAC); (ABBREV_TAC `f_temp = (\u v. if edgeX V x {u, v} then dihX V x (u,v) * lmfun (hl [u; v]) else &0)`); (NEW_GOAL `!u v. (f_temp:real^3->real^3->real) u v = f_temp v u`); (EXPAND_TAC "f_temp" THEN REWRITE_TAC[BETA_THM]); (REWRITE_TAC[HL; set_of_list; SET_RULE `{a,b} = {b,a}`]); (REPEAT GEN_TAC THEN COND_CASES_TAC); (COND_CASES_TAC); (REWRITE_WITH `dihX V x (u,v) = dihX V x (v,u)`); (MATCH_MP_TAC DIHX_SYM); (ASM_REWRITE_TAC[IN; mcell_set; IN_ELIM_THM]); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REFL_TAC); (REWRITE_WITH `(g:(real^3->bool)->(real^3->bool)->real) x = (\({u, v}). f_temp u v)`); (EXPAND_TAC "f_temp" THEN EXPAND_TAC "g" THEN REWRITE_TAC[IN]); (UNDISCH_TAC `x' IN edgeX V x` THEN REWRITE_TAC[IN;IN_ELIM_THM; edgeX]); (STRIP_TAC); (ASM_SIMP_TAC[BETA_PAIR_THM]); (EXPAND_TAC "f_temp"); (COND_CASES_TAC); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (REAL_ARITH_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REFL_TAC); (REWRITE_WITH `sum S2 (\X. sum (edgeX V X) (g X)) = sum S2 (\X. sum {e | e IN T1 /\ edgeX V X e} (g X))`); (MATCH_MP_TAC SUM_EQ); (EXPAND_TAC "S2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_TAC[SET_RULE `a = b <=> b SUBSET a /\ a SUBSET b`]); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[SET_RULE `A SUBSET {y | T2 y /\ A y} <=> A SUBSET T2`]); (EXPAND_TAC "T1" THEN REWRITE_TAC[SUBSET; edgeX; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXPAND_TAC "V1" THEN REWRITE_TAC[IN_ELIM_THM]); (EXISTS_TAC `u:real^3` THEN EXISTS_TAC `v:real^3`); (REWRITE_TAC[ASSUME `x' = {u, v:real^3}`; IN_INTER; MESON[IN] `V (x:real^3) <=> x IN V`]); (NEW_GOAL `VX V x = V INTER x`); (MATCH_MP_TAC Hdtfnfz.HDTFNFZ); (UNDISCH_TAC `mcell_set V x` THEN REWRITE_TAC[mcell_set; IN; IN_ELIM_THM]); (STRIP_TAC); (EXISTS_TAC `ul:(real^3)list` THEN EXISTS_TAC `i:num`); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (REWRITE_WITH `sum S2 (\X. sum {e | e IN T1 /\ edgeX V X e} (g X)) = sum T1 (\x. sum {X | X IN S2 /\ edgeX V X x} (\X. g X x))`); (REWRITE_WITH `sum S2 (\X. sum {e | e IN T1 /\ edgeX V X e} (g X)) = sum S2 (\X. sum {e | e IN T1 /\ edgeX V X e} (\x.g X x))`); (REWRITE_TAC[ETA_AX]); (ASM_SIMP_TAC[SUM_SUM_RESTRICT]); (* May 09 - OK here *) (ABBREV_TAC `T2 = {{u0:real^3, u1} | u0 IN V1 /\ u1 IN V1 /\ ~(u0 = u1) /\ hl[u0;u1] <= h0}`); (NEW_GOAL `sum T1 (\x. sum {X | X IN S2 /\ edgeX V X x} (\X. g X x)) = sum T2 (\x. sum {X | X IN S2 /\ edgeX V X x} (\X. g X x))`); (MATCH_MP_TAC SUM_SUPERSET); (EXPAND_TAC "T1" THEN EXPAND_TAC "T2" THEN REWRITE_TAC[IN; IN_ELIM_THM] THEN REPEAT STRIP_TAC); (SET_TAC[]); (MATCH_MP_TAC SUM_EQ_0); (EXPAND_TAC "g" THEN REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ABBREV_TAC `f_temp = (\u v. if {u, v} IN edgeX V x' then dihX V x' (u,v) * lmfun (hl [u; v]) else &0)`); (REWRITE_WITH `(\({u, v}). if {u, v} IN edgeX V x' then dihX V x' (u,v) * lmfun (hl [u; v]) else &0) = (\({u, v}). f_temp u v)`); (EXPAND_TAC "f_temp"); (REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `(\({u, v}). f_temp u v) {u, v} = (f_temp:real^3->real^3->real) u v`); (MATCH_MP_TAC BETA_PAIR_THM); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f_temp"); (REPEAT GEN_TAC THEN REPEAT COND_CASES_TAC); (REWRITE_TAC[HL; set_of_list; SET_RULE `{a,b} ={b,a}`]); (REWRITE_WITH `dihX V x' (u',v') = dihX V x' (v',u')`); (MATCH_MP_TAC DIHX_SYM); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `x' IN {X | S2 X /\ edgeX V X x}`); (EXPAND_TAC "S2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (MESON_TAC[]); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b} = {b,a}`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b} = {b,a}`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REFL_TAC); (EXPAND_TAC "f_temp"); (COND_CASES_TAC); (ASM_CASES_TAC `hl [u; v:real^3] <= h0`); (NEW_GOAL `F`); (UNDISCH_TAC `~(?u0 u1. (V1 u0 /\ V1 u1 /\ ~(u0 = u1) /\ hl [u0; u1] <= h0) /\ x = {u0, u1:real^3})` THEN REWRITE_TAC[]); (EXISTS_TAC `u:real^3` THEN EXISTS_TAC `v:real^3`); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `{u, v} IN edgeX V x'` THEN REWRITE_TAC[IN; IN_ELIM_THM; edgeX]); (REPEAT STRIP_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `lmfun (hl [u; v:real^3]) = &0`); (ASM_REWRITE_TAC[lmfun]); (REAL_ARITH_TAC); (REFL_TAC); (ASM_REWRITE_TAC[]); (* ==================================================================== *) (* REALLY OK Here *) (MATCH_MP_TAC (REAL_ARITH `(?b. a <= b /\ b + d <= e) ==> a + d <= e`)); (EXISTS_TAC `(&8 * mm2 / pi) * sum T2 (\x. sum {X | mcell_set V X /\ x IN edgeX V X} (\X. g X x))`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a * b <= a * c <=> &0 <= a * (c - b)`]); (MATCH_MP_TAC REAL_LE_MUL THEN STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL THEN STRIP_TAC); (REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_DIV THEN SIMP_TAC[ZERO_LE_MM2_LEMMA; PI_POS_LE]); (REWRITE_TAC[REAL_ARITH `&0 <= a - b <=> b <= a`]); (MATCH_MP_TAC SUM_LE THEN REPEAT STRIP_TAC); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `T1:(real^3->bool)->bool`); (ASM_REWRITE_TAC[] THEN ASM_SET_TAC[]); (REWRITE_TAC[BETA_THM]); (MATCH_MP_TAC SUM_SUBSET_SIMPLE); (STRIP_TAC); (REWRITE_TAC[IN] THEN MATCH_MP_TAC Marchal_cells_3.FINITE_EDGE_X2); (UP_ASM_TAC THEN EXPAND_TAC "T2" THEN REWRITE_TAC[IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN ASM_REWRITE_TAC[]); (REPEAT STRIP_TAC); (EXPAND_TAC "S2" THEN REWRITE_TAC[IN] THEN SET_TAC[]); (REWRITE_TAC[BETA_THM]); (REWRITE_WITH `g x' x = gammaY V x' lmfun x`); (EXPAND_TAC "g" THEN REWRITE_TAC[gammaY]); (MATCH_MP_TAC gamma_y_pos_le); (UP_ASM_TAC THEN ASM_REWRITE_TAC[IN_DIFF; IN; IN_ELIM_THM]); (MESON_TAC[]); (REWRITE_WITH `sum T2 (\x. sum {X | mcell_set V X /\ x IN edgeX V X} (\X. g X x)) = sum T2 (\x. &2 * pi * lmfun (radV x))`); (MATCH_MP_TAC SUM_EQ); (REPEAT STRIP_TAC); (REWRITE_TAC[BETA_THM]); (EXPAND_TAC "g"); (REWRITE_TAC[HL; BETA_THM; set_of_list]); (UP_ASM_TAC THEN EXPAND_TAC "T2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (STRIP_TAC); (REWRITE_WITH `sum {X | mcell_set V X /\ edgeX V X x} (\X. (\({u, v}). if edgeX V X {u, v} then dihX V X (u,v) * lmfun (radV {u, v}) else &0) x) = sum {X | mcell_set V X /\ edgeX V X x} (\X. (if edgeX V X {u0, u1} then dihX V X (u0,u1) * lmfun (radV {u0, u1}) else &0))`); (MATCH_MP_TAC SUM_EQ); (ASM_REWRITE_TAC[IN; IN_ELIM_THM; BETA_THM] THEN REPEAT STRIP_TAC); (ABBREV_TAC `f_temp = (\u v. if edgeX V x' {u, v} then dihX V x' (u,v) * lmfun (radV {u, v}) else &0)`); (NEW_GOAL `!u:real^3 v:real^3. (f_temp:real^3->real^3->real) u v = f_temp v u`); (EXPAND_TAC "f_temp" THEN REWRITE_TAC[BETA_THM]); (REWRITE_TAC[HL; set_of_list; SET_RULE `{a,b} = {b,a}`]); (REPEAT GEN_TAC THEN COND_CASES_TAC); (COND_CASES_TAC); (REWRITE_WITH `dihX V x' (u,v) = dihX V x' (v,u)`); (MATCH_MP_TAC DIHX_SYM); (ASM_REWRITE_TAC[IN; mcell_set; IN_ELIM_THM]); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REFL_TAC); (REWRITE_WITH `(\({u, v}). if edgeX V x' {u, v} then dihX V x' (u,v) * lmfun (radV {u, v}) else &0) = (\({u, v}). f_temp u v)`); (EXPAND_TAC "f_temp" THEN REWRITE_TAC[IN]); (REWRITE_WITH `(if edgeX V x' {u0, u1} then dihX V x' (u0,u1) * lmfun (radV {u0, u1}) else &0) = f_temp u0 u1`); (EXPAND_TAC "f_temp" THEN REWRITE_TAC[IN]); (MATCH_MP_TAC BETA_PAIR_THM); (ASM_REWRITE_TAC[]); (NEW_GOAL `FINITE {X | mcell_set V X /\ edgeX V X x}`); (MATCH_MP_TAC Marchal_cells_3.FINITE_EDGE_X2); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN ASM_REWRITE_TAC[]); (ASM_SIMP_TAC [SUM_CASES]); (REWRITE_TAC[SET_RULE `{X | X IN {X | mcell_set V X /\ edgeX V X {u0, u1}} /\ edgeX V X {u0, u1}} = {X | mcell_set V X /\ edgeX V X {u0, u1}} /\ {X | X IN {X | mcell_set V X /\ edgeX V X {u0, u1}} /\ ~edgeX V X {u0, u1}} = {}`; SUM_CLAUSES; REAL_ARITH `a + &0 = a`]); (REWRITE_TAC[SUM_RMUL]); (REWRITE_WITH `sum {X | mcell_set V X /\ edgeX V X {u0, u1}} (\X. dihX V X (u0,u1)) = &2 * pi`); (REWRITE_WITH `{X | mcell_set V X /\ edgeX V X {u0, u1}} = {X | mcell_set V X /\ {u0, u1} IN edgeX V X}`); (REWRITE_TAC[IN]); (MATCH_MP_TAC GRUTOTI); (ASM_REWRITE_TAC[]); (REPEAT STRIP_TAC); (ASM_SET_TAC[]); (ASM_SET_TAC[]); (NEW_GOAL `h0 < sqrt (&2)`); (REWRITE_TAC[H0_LT_SQRT2]); (ASM_REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_TAC[SUM_LMUL; REAL_ARITH `(&8 * mm2 / pi) * &2 * pi * a = (&8 * mm2) * (pi / pi) * (&2 * a)`]); (REWRITE_WITH `pi / pi = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[PI_NZ]); (REWRITE_TAC[REAL_ARITH `&1 * a = a`]); (EXPAND_TAC "c"); (REWRITE_TAC[REAL_ARITH `(&8 * mm2) * a + (&8 * mm2 * d) * b <= &8 * mm2 * c <=> &0 <= (&8 * mm2) * (c - a - d * b)`]); (MATCH_MP_TAC REAL_LE_MUL); (SIMP_TAC[REAL_LE_MUL; REAL_ARITH `&0 <= &8`; ZERO_LE_MM2_LEMMA]); (REWRITE_TAC[REAL_ARITH `&0 <= a - b - c <=> b + c <= a`]); (EXPAND_TAC "T2"); (REWRITE_TAC[Marchal_cells_3.HL_2; REAL_ARITH `inv (&2) * x <= y <=> x <= &2 * y`]); (REWRITE_WITH `&2 * sum {{u0:real^3, u1} | u0 IN V1 /\ u1 IN V1 /\ ~(u0 = u1) /\ dist (u0,u1) <= &2 * h0} (\x. lmfun (radV x)) = sum {u0:real^3,u1 | u0 IN V1 /\ u1 IN V1 /\ ~(u0 = u1) /\ dist (u0,u1) <= &2 * h0} (\(u0,u1). (\x. lmfun (radV x)) {u0, u1})`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC SUM_PAIR_2_SET); (EXPAND_TAC "V1"); (ASM_SIMP_TAC [Packing3.KIUMVTC]); (REWRITE_TAC[GSYM Marchal_cells_3.HL_2; HL;set_of_list]); (ABBREV_TAC `t = (\u:real^3. {v | v IN V /\ ~(u = v) /\ dist (u,v) <= &2 * h0})`); (ABBREV_TAC `f_temp = (\u v. lmfun (radV {u:real^3, v}))`); (REWRITE_WITH `sum V1 (\u. sum {v | v IN V /\ ~(u = v) /\ dist (u,v:real^3) <= &2 * h0} (\v. lmfun (radV {u, v}))) = sum V1 (\u:real^3. sum ((t:real^3->real^3->bool) u) ((f_temp:real^3->real^3->real) u))`); (EXPAND_TAC "f_temp" THEN EXPAND_TAC "t"); (REWRITE_TAC[]); (REWRITE_WITH `sum V1 (\i. sum (t i) (f_temp i)) = sum {u0:real^3,u1:real^3 | u0 IN V1 /\ u1 IN t u0} (\(u0,u1). f_temp u0 u1)`); (MATCH_MP_TAC SUM_SUM_PRODUCT); (REPEAT STRIP_TAC); (EXPAND_TAC "V1"); (ASM_SIMP_TAC [Packing3.KIUMVTC]); (EXPAND_TAC "t"); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `(V:real^3->bool) INTER ball (vec 0, r + &2 * h0)`); (STRIP_TAC); (ASM_SIMP_TAC [Packing3.KIUMVTC]); (REWRITE_TAC[SUBSET; IN; IN_INTER; IN_BALL; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `dist (vec 0, x) <= dist (vec 0, u0) + dist (u0, x:real^3)`); (NORM_ARITH_TAC); (NEW_GOAL `dist (vec 0, u0:real^3) < r`); (REWRITE_TAC[GSYM IN_BALL]); (UNDISCH_TAC `u0:real^3 IN V1` THEN EXPAND_TAC "V1" THEN SET_TAC[]); (ASM_REAL_ARITH_TAC); (EXPAND_TAC "t" THEN EXPAND_TAC "f_temp"); (REWRITE_TAC[IN; IN_ELIM_THM]); (REWRITE_TAC[REAL_ARITH `a + &0 * r pow 2 = a`]); (MATCH_MP_TAC SUM_SUBSET_SIMPLE); (REPEAT STRIP_TAC); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{u0:real^3,u1:real^3 |u0 IN V1 /\u1 IN V INTER ball (vec 0, r + &2 * h0)}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_PRODUCT); (STRIP_TAC); (EXPAND_TAC "V1"); (ASM_SIMP_TAC [Packing3.KIUMVTC]); (ASM_SIMP_TAC [Packing3.KIUMVTC]); (REWRITE_TAC[SUBSET; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3`); (ASM_REWRITE_TAC[]); (REWRITE_TAC[MESON[IN] `(A:real^3->bool) s <=> s IN A`]); (REWRITE_TAC[IN_BALL; IN_INTER; IN]); (ASM_REWRITE_TAC[]); (NEW_GOAL `dist (vec 0, u1) <= dist (vec 0, u0) + dist (u0, u1:real^3)`); (NORM_ARITH_TAC); (NEW_GOAL `dist (vec 0, u0:real^3) < r`); (REWRITE_TAC[GSYM IN_BALL]); (UNDISCH_TAC `(V1:real^3->bool) u0` THEN EXPAND_TAC "V1"); (REWRITE_TAC[MESON[IN] `(A:real^3->bool) s <=> s IN A`]); (SET_TAC[]); (ASM_REAL_ARITH_TAC); (EXPAND_TAC "V1" THEN REWRITE_TAC[MESON[IN] `(A:real^3->bool) s <=> s IN A`; IN_INTER] THEN SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM; IN]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (REWRITE_TAC[lmfun_pos_le]); (EXISTS_TAC `&0`); (REPEAT STRIP_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[])]);;