(* ========================================================================= *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Authour : VU KHAC KY *) (* Book lemma: GRUTOTI *) (* Chaper : Packing *) (* *) (* ========================================================================= *) (* *) (* flyspeck_needs "packing/marchal_cells_3.hl";; *) (* *) (* ========================================================================= *) let GRUTOTI1_concl = `!V u0 u1 e. saturated V /\ packing V /\ u0 IN V /\ u1 IN V /\ ~(u0 = u1) /\ hl [u0;u1] < sqrt (&2) /\ e = {u0, u1} ==> sum {X | mcell_set V X /\ e IN edgeX V X } (\t. dihX V t (u0,u1)) = &2 * pi`;;let GRUTOTI = prove_by_refinement (GRUTOTI1_concl, [(REPEAT STRIP_TAC); (NEW_GOAL `barV V 1 [u0;u1:real^3]`); (MATCH_MP_TAC HL_LE_SQRT2_IMP_BARV_1); (ASM_REWRITE_TAC[]); (NEW_GOAL `{k | k IN 1..3 /\ voronoi_list V [u0;u1:real^3] = UNIONS {convex hull ({omega_list_n V vl i | i IN 1..k - 1} UNION voronoi_list V vl) | vl | barV V k vl /\ truncate_simplex 1 vl = [u0;u1]}} = 1..3`); (MATCH_MP_TAC Rogers.GLTVHUM_lemma1); (ASM_REWRITE_TAC[] THEN ARITH_TAC); (NEW_GOAL `3 IN {k | k IN 1..3 /\ voronoi_list V [u0; u1] = UNIONS {convex hull ({omega_list_n V vl i | i IN 1..k - 1} UNION voronoi_list V vl) | vl | barV V k vl /\ truncate_simplex 1 vl = [u0; u1]}}`); (ASM_REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC); (UP_ASM_TAC THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REWRITE_WITH `UNIONS {convex hull ({omega_list_n V vl i | i IN 1..3 - 1} UNION voronoi_list V vl) | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]} = UNIONS {convex hull {omega_list_n V vl 1, omega_list_n V vl 2, omega_list_n V vl 3} | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}`); (ONCE_REWRITE_TAC[SET_EQ_LEMMA]); (REWRITE_TAC[IN_UNIONS] THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `t:real^3->bool` THEN ASM_REWRITE_TAC[]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (NEW_GOAL `?a. voronoi_list V vl = {a} /\ a = circumcenter (set_of_list vl) /\ hl vl = dist (HD vl,a)`); (MATCH_MP_TAC Marchal_cells_2_new.VORONOI_LIST_3_SINGLETON_EXPLICIT); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `omega_list_n V vl 3 IN voronoi_list V vl`); (REWRITE_WITH `omega_list_n V vl 3 = omega_list V vl`); (REWRITE_TAC[OMEGA_LIST]); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ARITH_RULE `(3 + 1) - 1 = 3`]); (MATCH_MP_TAC Packing3.OMEGA_LIST_IN_VORONOI_LIST); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (NEW_GOAL `omega_list_n V vl 3 = a`); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ARITH_RULE `3 - 1 = 2`; IN_NUMSEG; ARITH_RULE `1 <= i /\ i <= 2 <=> i = 1 \/ i = 2`]); (REWRITE_WITH `{omega_list_n V vl i | i = 1 \/ i = 2} = {omega_list_n V vl 1,omega_list_n V vl 2}`); (SET_TAC[]); (REWRITE_WITH `{omega_list_n V vl 1, omega_list_n V vl 2} UNION {circumcenter (set_of_list vl)} = {omega_list_n V vl 1, omega_list_n V vl 2, circumcenter (set_of_list vl)}`); (SET_TAC[]); (EXISTS_TAC `t:real^3->bool` THEN ASM_REWRITE_TAC[]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (NEW_GOAL `?a. voronoi_list V vl = {a} /\ a = circumcenter (set_of_list vl) /\ hl vl = dist (HD vl,a)`); (MATCH_MP_TAC Marchal_cells_2_new.VORONOI_LIST_3_SINGLETON_EXPLICIT); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `omega_list_n V vl 3 IN voronoi_list V vl`); (REWRITE_WITH `omega_list_n V vl 3 = omega_list V vl`); (REWRITE_TAC[OMEGA_LIST]); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ARITH_RULE `(3 + 1) - 1 = 3`]); (MATCH_MP_TAC Packing3.OMEGA_LIST_IN_VORONOI_LIST); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (NEW_GOAL `omega_list_n V vl 3 = a`); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ARITH_RULE `3 - 1 = 2`; IN_NUMSEG; ARITH_RULE `1 <= i /\ i <= 2 <=> i = 1 \/ i = 2`]); (REWRITE_WITH `{omega_list_n V vl i | i = 1 \/ i = 2} = {omega_list_n V vl 1,omega_list_n V vl 2}`); (SET_TAC[]); (REWRITE_WITH `{omega_list_n V vl 1, omega_list_n V vl 2} UNION {circumcenter (set_of_list vl)} = {omega_list_n V vl 1, omega_list_n V vl 2, circumcenter (set_of_list vl)}`); (SET_TAC[]); (STRIP_TAC); (* ======================================================================= *) (ABBREV_TAC `p = circumcenter {u0, u1:real^3}`); (NEW_GOAL `aff_dim (u0 INSERT voronoi_list V [u0;u1]) = &3`); (REWRITE_TAC[AFF_DIM_INSERT]); (COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `affine hull voronoi_list V [u0; u1] SUBSET affine hull {x | &2 % (u0 - u1) dot x = norm u0 pow 2 - norm u1 pow 2}`); (MATCH_MP_TAC Marchal_cells_2_new.AFFINE_SUBSET_KY_LEMMA); (REWRITE_TAC[VORONOI_LIST; set_of_list; Packing3.VORONOI_SET_2]); (ONCE_REWRITE_TAC[SET_RULE `a INTER b = b INTER a`]); (ASM_SIMP_TAC[Pack2.INTER_VORONOI_SUBSET_BISECTOR]); (NEW_GOAL `affine hull {x | &2 % (u0 - u1) dot x = norm u0 pow 2 - norm u1 pow 2} = {x:real^3 | &2 % (u0 - u1) dot x = norm u0 pow 2 - norm u1 pow 2}`); (REWRITE_TAC[AFFINE_HULL_EQ]); (REWRITE_TAC[AFFINE_HYPERPLANE]); (NEW_GOAL `~(u0 IN {x:real^3 | &2 % (u0 - u1) dot x = norm u0 pow 2 - norm u1 pow 2})`); (REWRITE_TAC[IN; IN_ELIM_THM; NORM_POW_2]); (ONCE_REWRITE_TAC [REAL_ARITH `a = b <=> a - b = &0`]); (REWRITE_TAC[VECTOR_ARITH `&2 % (u0 - u1) dot u0 - (u0 dot u0 - u1 dot u1) = (u0 - u1) dot (u0 - u1)`]); (REWRITE_TAC[DOT_EQ_0] THEN ASM_NORM_ARITH_TAC); (ASM_SET_TAC[]); (ASM_MESON_TAC[]); (REWRITE_TAC[ARITH_RULE `a + &1 = b:int <=> a = b - &1`]); (MATCH_MP_TAC Packing3.AFF_DIM_VORONOI_LIST); (ASM_REWRITE_TAC[]); (NEW_GOAL `aff_dim (u0 INSERT voronoi_list V [u0; u1]) = &(dimindex (:3))`); (ASM_REWRITE_TAC[DIMINDEX_3]); (UP_ASM_TAC THEN REWRITE_TAC[AFF_DIM_EQ_FULL]); (STRIP_TAC); (ABBREV_TAC `S = voronoi_list V [u0;u1]`); (NEW_GOAL `!x. x IN S ==> (x - u0) dot (u1 - u0) = dist (p, u0) * dist (u1, u0:real^3)`); (REPEAT STRIP_TAC); (NEW_GOAL `p = inv (&2) % (u0 + (u1:real^3))`); (EXPAND_TAC "p" THEN REWRITE_TAC[Rogers.CIRCUMCENTER_2; midpoint]); (REWRITE_TAC[dist]); (REWRITE_WITH `u1 - u0 = &2 % (p - u0:real^3)`); (ASM_REWRITE_TAC[]); (VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_MUL; REAL_ARITH `abs (&2) = &2`; REAL_ARITH `a * b * a = b * a pow 2`; NORM_POW_2; DOT_RMUL]); (REWRITE_WITH `(x - u0) dot (p - u0:real^3) = (p - u0) dot (p - u0) - (x - p) dot (u0 - p)`); (VECTOR_ARITH_TAC); (REWRITE_WITH `(x - p) dot (u0 - p:real^3) = &0`); (EXPAND_TAC "p"); (REWRITE_WITH `{u0, u1} = set_of_list [u0; u1:real^3]`); (REWRITE_TAC[set_of_list]); (MATCH_MP_TAC Rogers.MHFTTZN4); (EXISTS_TAC `V:real^3->bool` THEN EXISTS_TAC `1`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (NEW_GOAL `S SUBSET affine hull voronoi_list V [u0; u1]`); (EXPAND_TAC "S"); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (ASM_SET_TAC[]); (REWRITE_TAC[set_of_list]); (NEW_GOAL `{u0,u1} SUBSET affine hull {u0,u1:real^3}`); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (ASM_SET_TAC[]); (REAL_ARITH_TAC); (* ========================================================================= *) (ABBREV_TAC `S1 = {x:real^3 | &2 % (u0 - u1) dot x = norm u0 pow 2 - norm u1 pow 2}`); (ABBREV_TAC `S2:real^3->bool = (S1 DIFF (relative_interior S))`); (NEW_GOAL `closed_in (subtopology euclidean (S1:real^3->bool)) S2`); (EXPAND_TAC "S2"); (MATCH_MP_TAC CLOSED_IN_DIFF); (STRIP_TAC); (NEW_GOAL `closed (S1:real^3->bool)`); (EXPAND_TAC "S1" THEN REWRITE_TAC[CLOSED_HYPERPLANE]); (MATCH_MP_TAC CLOSED_SUBSET); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (REWRITE_WITH `S1 = affine hull (S:real^3->bool)`); (EXPAND_TAC "S"); (NEW_GOAL `affine hull S1 = S1:real^3->bool`); (REWRITE_TAC[AFFINE_HULL_EQ]); (EXPAND_TAC "S1" THEN REWRITE_TAC[AFFINE_HYPERPLANE]); (ONCE_REWRITE_TAC[GSYM (ASSUME `affine hull S1 = S1:real^3->bool`)]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC AFF_DIM_EQ_AFFINE_HULL); (STRIP_TAC); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f x | x IN {a, b}} = f a INTER f b`]); (DEL_TAC THEN EXPAND_TAC "S1"); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (REWRITE_WITH `aff_dim (S1:(real^3->bool)) = &(dimindex (:3)) - &1`); (DEL_TAC THEN EXPAND_TAC "S1"); (MATCH_MP_TAC AFF_DIM_HYPERPLANE); (REWRITE_TAC[VECTOR_ARITH `&2 % (s - t) = vec 0 <=> s = t`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[DIMINDEX_3]); (REWRITE_WITH `aff_dim (voronoi_list V [u0;u1:real^3]) = &3 - &1`); (MATCH_MP_TAC Packing3.AFF_DIM_VORONOI_LIST); (ASM_REWRITE_TAC[]); (ARITH_TAC); (REWRITE_TAC[OPEN_IN_RELATIVE_INTERIOR]); (NEW_GOAL `closed (S2:real^3->bool)`); (MATCH_MP_TAC CLOSED_IN_CLOSED_TRANS); (EXISTS_TAC `S1:real^3->bool`); (ASM_REWRITE_TAC[]); (EXPAND_TAC "S1"); (REWRITE_TAC[CLOSED_HYPERPLANE]); (NEW_GOAL `~(S2:real^3->bool = {})`); (EXPAND_TAC "S2"); (REWRITE_TAC [SET_RULE `A DIFF B = {} <=> A SUBSET B`]); (REPEAT STRIP_TAC); (NEW_GOAL `S1 SUBSET S:real^3->bool`); (NEW_GOAL `relative_interior S SUBSET S:real^3->bool`); (REWRITE_TAC[RELATIVE_INTERIOR_SUBSET]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (NEW_GOAL `S1 = S:real^3->bool`); (NEW_GOAL `S SUBSET S1:real^3->bool`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f x | x IN {a, b}} = f a INTER f b`]); (EXPAND_TAC "S1"); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (NEW_GOAL `bounded (S1:real^3->bool)`); (REWRITE_TAC[ASSUME `S1 = S:real^3->bool`]); (DEL_TAC THEN EXPAND_TAC "S"); (MATCH_MP_TAC Packing3.BOUNDED_VORONOI_LIST); (EXISTS_TAC `1`); (ASM_REWRITE_TAC[]); (NEW_GOAL `~bounded (S1:real^3->bool)`); (EXPAND_TAC "S1"); (MATCH_MP_TAC UNBOUNDED_HYPERPLANE); (REWRITE_TAC[VECTOR_ARITH `&2 % (u0 - u1) = vec 0 <=> u0 = u1`]); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (NEW_GOAL `?z:real^3. z IN S2 /\ (!w. w IN S2 ==> dist (u0,z) <= dist (u0,w))`); (MATCH_MP_TAC DISTANCE_ATTAINS_INF); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (* ======================================================================== *) (ABBREV_TAC `a = dist (p, u0:real^3) / dist (z, u0)`); (NEW_GOAL `&0 < a /\ a < &1`); (EXPAND_TAC "a"); (NEW_GOAL `~(u0:real^3 IN S1)`); (EXPAND_TAC "S1" THEN REWRITE_TAC[IN; IN_ELIM_THM; NORM_POW_2]); (REWRITE_TAC[REAL_ARITH `a = b - c <=> a + c - b = &0`]); (REWRITE_TAC[VECTOR_ARITH `&2 % (u0 - u1) dot u0 + u1 dot u1 - u0 dot u0 = (u0 - u1) dot (u0 - u1)`]); (REWRITE_TAC[DOT_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> a = b`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `&0 < dist (p,u0:real^3)`); (MATCH_MP_TAC DIST_POS_LT); (EXPAND_TAC "p" THEN REWRITE_TAC[Rogers.CIRCUMCENTER_2; midpoint]); (REWRITE_TAC[VECTOR_ARITH `inv (&2) % (u0 + u1) = u0 <=> u0 = u1`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `&0 < dist (z,u0:real^3)`); (MATCH_MP_TAC DIST_POS_LT); (STRIP_TAC); (NEW_GOAL `z:real^3 IN S1`); (ASM_SET_TAC[]); (ASM_MESON_TAC[]); (STRIP_TAC); (MATCH_MP_TAC REAL_LT_DIV); (ASM_REWRITE_TAC[]); (REWRITE_WITH `dist (p,u0) / dist (z,u0:real^3) < &1 <=> dist (p,u0) < &1 * dist (z,u0)`); (ASM_SIMP_TAC[REAL_LT_LDIV_EQ]); (REWRITE_TAC[REAL_MUL_LID]); (MATCH_MP_TAC Tactics_jordan.REAL_POW_2_LT); (REPEAT STRIP_TAC); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (REWRITE_TAC[dist]); (REWRITE_WITH `norm (z - u0:real^3) pow 2 = norm (p - u0) pow 2 + norm (z - p) pow 2`); (MATCH_MP_TAC PYTHAGORAS); (REWRITE_TAC[orthogonal]); (REWRITE_WITH `p = circumcenter (set_of_list [u0;u1:real^3])`); (ASM_REWRITE_TAC[set_of_list]); (ONCE_REWRITE_TAC[DOT_SYM]); (MATCH_MP_TAC Rogers.MHFTTZN4); (EXISTS_TAC `V:real^3->bool` THEN EXISTS_TAC `1`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ASSUME `voronoi_list V [u0; u1] = S`]); (REWRITE_WITH `affine hull (S:real^3->bool) = S1`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (EXPAND_TAC "S"); (NEW_GOAL `affine hull S1 = S1:real^3->bool`); (REWRITE_TAC[AFFINE_HULL_EQ]); (EXPAND_TAC "S1" THEN REWRITE_TAC[AFFINE_HYPERPLANE]); (ONCE_REWRITE_TAC[GSYM (ASSUME `affine hull S1 = S1:real^3->bool`)]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC AFF_DIM_EQ_AFFINE_HULL); (STRIP_TAC); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f x | x IN {a, b}} = f a INTER f b`]); (DEL_TAC THEN EXPAND_TAC "S1"); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (REWRITE_WITH `aff_dim (S1:(real^3->bool)) = &(dimindex (:3)) - &1`); (DEL_TAC THEN EXPAND_TAC "S1"); (MATCH_MP_TAC AFF_DIM_HYPERPLANE); (REWRITE_TAC[VECTOR_ARITH `&2 % (s - t) = vec 0 <=> s = t`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[DIMINDEX_3]); (REWRITE_WITH `aff_dim (voronoi_list V [u0;u1:real^3]) = &3 - &1`); (MATCH_MP_TAC Packing3.AFF_DIM_VORONOI_LIST); (ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_SET_TAC[]); (REWRITE_TAC[set_of_list]); (NEW_GOAL `{u0, u1:real^3} SUBSET affine hull {u0, u1}`); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (ASM_SET_TAC[]); (REWRITE_TAC[REAL_ARITH `a < a + b <=> &0 < b`; NORM_POW_2; DOT_POS_LT]); (REWRITE_TAC[VECTOR_ARITH `a - b = vec 0 <=> a = b`]); (STRIP_TAC); (NEW_GOAL `~(z:real^3 IN S2)`); (REWRITE_TAC[ASSUME `z = p:real^3`]); (EXPAND_TAC "S2"); (NEW_GOAL `p:real^3 IN relative_interior S`); (ABBREV_TAC `B = V INTER ball (p:real^3, &8)`); (ABBREV_TAC `A = B DIFF {u0, u1:real^3}`); (NEW_GOAL `FINITE (A:real^3->bool)`); (EXPAND_TAC "A"); (MATCH_MP_TAC FINITE_DIFF); (EXPAND_TAC "B"); (MATCH_MP_TAC Packing3.KIUMVTC THEN ASM_REWRITE_TAC[]); (NEW_GOAL `?y. dist (p,y:real^3) = &4`); (MATCH_MP_TAC VECTOR_CHOOSE_DIST); (REAL_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (UNDISCH_TAC `saturated (V:real^3->bool)`); (REWRITE_TAC[saturated] THEN STRIP_TAC); (NEW_GOAL `?z. z IN V /\ dist (y:real^3, z) < &2`); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `z':real^3 IN A`); (EXPAND_TAC "A" THEN EXPAND_TAC "B"); (REWRITE_TAC[IN_DIFF; IN_INTER; IN_BALL]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `dist (p,z') <= dist (p, y) + dist (y, z':real^3)`); (REWRITE_TAC[DIST_TRIANGLE]); (ASM_REAL_ARITH_TAC); (NEW_GOAL `dist (p, y) <= dist (p, z') + dist (z', y:real^3)`); (REWRITE_TAC[DIST_TRIANGLE]); (UP_ASM_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DIST_SYM]); (STRIP_TAC); (NEW_GOAL `&2 < dist (z', p:real^3)`); (ASM_REAL_ARITH_TAC); (UP_ASM_TAC THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DIST_SYM]); (REWRITE_WITH `p = circumcenter (set_of_list [u0;u1:real^3])`); (ASM_MESON_TAC[set_of_list]); (NEW_GOAL `(!w. w IN set_of_list [u0;u1:real^3] ==> dist (circumcenter (set_of_list [u0;u1]),w) = hl [u0;u1])`); (MATCH_MP_TAC Rogers.HL_PROPERTIES); (EXISTS_TAC `V:real^3->bool` THEN EXISTS_TAC `1`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `dist (circumcenter (set_of_list [u0; u1:real^3]),z') = hl [u0; u1]`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[set_of_list]); (NEW_GOAL `sqrt (&2) <= &2`); (MATCH_MP_TAC Tactics_jordan.REAL_POW_2_LE); (SIMP_TAC[REAL_ARITH `&0 <= &2`; SQRT_POS_LE; SQRT_POW_2]); (REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (NEW_GOAL `?a:real^3. a IN A /\ (!x. x IN A ==> dist (p,a) <= dist (p,x))`); (MATCH_MP_TAC Packing3.REAL_FINITE_ARGMIN); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `d = inv (&4) * (dist (p, a') - dist (p, u0:real^3))`); (NEW_GOAL `&0 < d`); (EXPAND_TAC "d"); (MATCH_MP_TAC REAL_LT_MUL); (STRIP_TAC); (REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&0 < a - b <=> a > b`]); (ONCE_REWRITE_TAC[DIST_SYM]); (NEW_GOAL `!u v. u IN {u0,u1} /\ v IN V DIFF {u0,u1} ==> dist (v,p) > dist (u,p:real^3)`); (MATCH_MP_TAC Rogers.XYOFCGX); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[AFFINE_INDEPENDENT_2]); (ASM_MESON_TAC[set_of_list]); (REWRITE_WITH `radV {u0, u1:real^3} = hl [u0;u1]`); (REWRITE_TAC[HL;set_of_list]); (ASM_REWRITE_TAC[]); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (REWRITE_TAC[relative_interior; IN; IN_ELIM_THM]); (ABBREV_TAC `St = S INTER ball (p:real^3, d)`); (EXISTS_TAC `St:real^3->bool`); (REPEAT STRIP_TAC); (REWRITE_TAC[open_in]); (REPEAT STRIP_TAC); (NEW_GOAL `S SUBSET affine hull (S:real^3->bool)`); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (EXISTS_TAC `d - dist (p:real^3, x)`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 < a - b <=> b < a`]); (REWRITE_TAC[GSYM IN_BALL]); (ASM_SET_TAC[]); (EXPAND_TAC "St"); (REWRITE_TAC[IN_INTER]); (STRIP_TAC); (NEW_GOAL `dist (x',x:real^3) < d`); (NEW_GOAL `&0 <= dist (p,x:real^3)`); (REWRITE_TAC[DIST_POS_LE]); (ASM_REAL_ARITH_TAC); (NEW_GOAL `x' IN voronoi_closed V (u0:real^3)`); (REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_CASES_TAC `w IN {u0, u1:real^3}`); (ASM_CASES_TAC `w = u0:real^3`); (REWRITE_TAC[ASSUME `w = u0:real^3`]); (REAL_ARITH_TAC); (NEW_GOAL `w = u1:real^3`); (ASM_SET_TAC[]); (REWRITE_TAC[ASSUME `w = u1:real^3`]); (MATCH_MP_TAC (REAL_ARITH `a = b ==> a <= b`)); (NEW_GOAL `x':real^3 IN S1`); (NEW_GOAL `affine hull S SUBSET affine hull (S1:real^3->bool)`); (MATCH_MP_TAC Marchal_cells_2_new.AFFINE_SUBSET_KY_LEMMA); (EXPAND_TAC "S1" THEN REWRITE_TAC[GSYM (ASSUME `voronoi_list V [u0; u1] = S`); VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f v | v IN {a, b}} = f a INTER f b`]); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (REWRITE_WITH `x' IN S1 <=> x':real^3 IN affine hull S1`); (REWRITE_WITH `affine hull S1 = S1:real^3->bool`); (REWRITE_TAC[AFFINE_HULL_EQ]); (EXPAND_TAC "S1" THEN REWRITE_TAC[AFFINE_HYPERPLANE]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "S1" THEN REWRITE_TAC[IN_ELIM_THM; NORM_POW_2]); (ONCE_REWRITE_TAC[REAL_ARITH `a = b <=> a - b = &0`]); (REWRITE_TAC[ VECTOR_ARITH `&2 % (u0 - u1) dot x - (u0 dot u0 - u1 dot u1) = (u1 - x) dot (u1 - x) - (u0 - x) dot (u0 - x)`]); (REWRITE_TAC[REAL_ARITH `a - b = &0 <=> a = b`; GSYM NORM_POW_2; GSYM dist]); (STRIP_TAC); (REWRITE_TAC[DIST_EQ]); (ONCE_REWRITE_TAC[DIST_SYM]); (ASM_REWRITE_TAC[]); (NEW_GOAL `dist (x', u0:real^3) <= dist (x', x) + dist (x, u0)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x, u0:real^3) <= dist (x, p:real^3) + dist (p, u0)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x,p:real^3) < d`); (NEW_GOAL `x IN ball (p:real^3, d)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[IN_BALL]); (REWRITE_TAC[DIST_SYM]); (NEW_GOAL `dist (x',u0) < &2 * d + dist (p:real^3,u0)`); (ASM_REAL_ARITH_TAC); (NEW_GOAL `dist (p, w:real^3)- &2 * d <= dist (x',w)`); (NEW_GOAL `dist (x, w:real^3) <= dist (x, x') + dist (x', w)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (p, w:real^3) <= dist (p, x) + dist (x, w)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x, x':real^3) < d /\ dist (p, x:real^3) < d`); (ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_REWRITE_TAC[]); (ASM_REAL_ARITH_TAC); (NEW_GOAL `dist (p, u0) + &4 * d <= dist (p, w:real^3)`); (EXPAND_TAC "d"); (REWRITE_TAC[REAL_ARITH `&4 * inv (&4) * a = a`]); (REWRITE_TAC[REAL_ARITH `a + b - a = b`]); (ASM_CASES_TAC `w:real^3 IN B`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (NEW_GOAL `~(dist (p,w:real^3) < &8)`); (REWRITE_TAC[GSYM IN_BALL]); (ASM_SET_TAC[]); (NEW_GOAL `dist (p,a':real^3) < &8`); (REWRITE_TAC[GSYM IN_BALL]); (ASM_SET_TAC[]); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (NEW_GOAL `x' IN voronoi_closed V (u1:real^3)`); (NEW_GOAL `x':real^3 IN S1`); (NEW_GOAL `affine hull S SUBSET affine hull (S1:real^3->bool)`); (MATCH_MP_TAC Marchal_cells_2_new.AFFINE_SUBSET_KY_LEMMA); (EXPAND_TAC "S1" THEN REWRITE_TAC[GSYM (ASSUME `voronoi_list V [u0; u1] = S`); VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f v | v IN {a, b}} = f a INTER f b`]); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (REWRITE_WITH `x' IN S1 <=> x':real^3 IN affine hull S1`); (REWRITE_WITH `affine hull S1 = S1:real^3->bool`); (REWRITE_TAC[AFFINE_HULL_EQ]); (EXPAND_TAC "S1" THEN REWRITE_TAC[AFFINE_HYPERPLANE]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "S1" THEN REWRITE_TAC[IN_ELIM_THM; NORM_POW_2]); (ONCE_REWRITE_TAC[REAL_ARITH `a = b <=> a - b = &0`]); (REWRITE_TAC[ VECTOR_ARITH `&2 % (u0 - u1) dot x - (u0 dot u0 - u1 dot u1) = (u1 - x) dot (u1 - x) - (u0 - x) dot (u0 - x)`]); (REWRITE_TAC[REAL_ARITH `a - b = &0 <=> a = b`; GSYM NORM_POW_2; GSYM dist]); (STRIP_TAC); (UNDISCH_TAC `x' IN voronoi_closed V (u0:real^3)`); (REWRITE_TAC[voronoi_closed; IN_ELIM_THM; IN]); (REPEAT STRIP_TAC); (REWRITE_WITH `dist (x', u1)= dist (x', u0:real^3)`); (ONCE_REWRITE_TAC[DIST_SYM]); (ASM_REWRITE_TAC[DIST_EQ]); (ASM_SIMP_TAC[]); (REWRITE_TAC[GSYM (ASSUME `voronoi_list V [u0; u1] = S`); VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f v | v IN {a, b}} = f a INTER f b`]); (ASM_REWRITE_TAC[IN_INTER]); (REWRITE_TAC[IN_BALL]); (NEW_GOAL `dist (p,x':real^3) <= dist (p,x) + dist (x, x':real^3)`); (REWRITE_TAC[DIST_TRIANGLE]); (NEW_GOAL `dist (x,x':real^3) = dist (x',x)`); (REWRITE_TAC[DIST_SYM]); (ASM_REAL_ARITH_TAC); (REWRITE_WITH `St p <=> p:real^3 IN St`); (REWRITE_TAC[IN]); (EXPAND_TAC "St" THEN REWRITE_TAC[IN_INTER; IN_BALL; DIST_REFL]); (STRIP_TAC); (REWRITE_WITH `p = omega_list V [u0; u1]`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `p = circumcenter (set_of_list [u0;u1:real^3])`); (ASM_MESON_TAC[set_of_list]); (MATCH_MP_TAC Rogers.XNHPWAB1); (EXISTS_TAC `1`); (ASM_REWRITE_TAC[IN]); (REWRITE_TAC[GSYM (ASSUME `voronoi_list V [u0;u1] = S`)]); (MATCH_MP_TAC Packing3.OMEGA_LIST_IN_VORONOI_LIST); (EXISTS_TAC `1` THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (ASM_MESON_TAC[]); (* ======================================================================== *) (NEW_GOAL `?b. &0 < b /\ b < &1 /\ rcone_gt u0 u1 b SUBSET aff_ge_alt {u0:real^3} S`); (EXISTS_TAC `a:real`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `A SUBSET B <=> (!x. ~(x IN B) ==> ~(x IN A))`]); (REPEAT STRIP_TAC); (NEW_GOAL `x:real^3 IN affine hull (u0 INSERT S)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[AFFINE_HULL_EXPLICIT_ALT; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ABBREV_TAC `h = sum (s DELETE u0:real^3) u`); (NEW_GOAL `(x - u0) dot (u1 - u0:real^3) = h * dist (p, u0) * dist (u1, u0:real^3)`); (EXPAND_TAC "x"); (NEW_GOAL `u0 = vsum s (\v:real^3. (u:real^3->real) v % (u0:real^3))`); (ASM_SIMP_TAC[VSUM_RMUL]); (VECTOR_ARITH_TAC); (REWRITE_WITH `vsum (s:real^3->bool) (\v. u v % v) - u0:real^3 = vsum s (\v. u v % v) - vsum s (\v:real^3. u v % u0)`); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `vsum s (\v. u v % v) - vsum s (\v:real^3. u v % u0:real^3) = vsum s (\x. (\v. u v % v) x - (\v. u v % u0) x)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC VSUM_SUB); (ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ARITH `a % x - a % y = a % (x - y)`]); (REWRITE_WITH `vsum s (\x:real^3. u x % (x - u0)) dot (u1 - u0) = sum s (\x. (\x. u x % (x - u0)) x dot (u1 - u0:real^3))`); (ASM_SIMP_TAC[DOT_LSUM]); (REWRITE_TAC[DOT_LMUL]); (REWRITE_WITH `sum s (\x:real^3. u x * ((x - u0) dot (u1 - u0:real^3))) = sum (s DELETE u0) (\x. u x * (dist (p,u0) * dist (u1,u0)))`); (ASM_CASES_TAC `u0:real^3 IN s`); (NEW_GOAL `s = u0 INSERT (s DELETE u0:real^3)`); (ASM_SET_TAC[]); (NEW_GOAL `FINITE (s DELETE u0:real^3)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `s:real^3->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]); (REWRITE_WITH `sum s (\x:real^3. u x * ((x - u0) dot (u1 - u0:real^3))) = sum (u0 INSERT (s DELETE u0)) (\x. u x * ((x - u0) dot (u1 - u0)))`); (ASM_MESON_TAC[]); (ABBREV_TAC `f = (\x:real^3. u x * ((x - u0) dot (u1 - u0:real^3)))`); (REWRITE_WITH `sum (u0:real^3 INSERT (s DELETE u0)) f = (if u0 IN (s DELETE u0) then sum (s DELETE u0) f else f u0 + sum (s DELETE u0) f)`); (MATCH_MP_TAC Marchal_cells_2_new.SUM_CLAUSES_alt); (ASM_REWRITE_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (ASM_SET_TAC[]); (ASM_MESON_TAC[]); (REWRITE_WITH `f (u0:real^3) = &0`); (EXPAND_TAC "f"); (REWRITE_TAC[VECTOR_ARITH `(u0 - u0) dot (u1 - u0) = &0`]); (REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&0 + a = a`]); (MATCH_MP_TAC SUM_EQ); (EXPAND_TAC "f"); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a * x = a * y * z <=> a * (x - y * z) = &0`]); (NEW_GOAL `(x' - u0) dot (u1 - u0) - dist (p,u0) * dist (u1,u0:real^3) = &0`); (REWRITE_TAC[REAL_ARITH `a - b = &0 <=> a = b`]); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[]); (REAL_ARITH_TAC); (REWRITE_WITH `s DELETE u0:real^3 = s`); (ASM_SET_TAC[]); (MATCH_MP_TAC SUM_EQ); (REPEAT STRIP_TAC); (REWRITE_TAC[]); (REWRITE_TAC[REAL_ARITH `a * x = a * y * z <=> a * (x - y * z) = &0`]); (NEW_GOAL `(x' - u0) dot (u1 - u0) - dist (p,u0) * dist (u1,u0:real^3) = &0`); (REWRITE_TAC[REAL_ARITH `a - b = &0 <=> a = b`]); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[]); (REAL_ARITH_TAC); (NEW_GOAL `FINITE (s DELETE u0:real^3)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `s:real^3->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]); (ASM_SIMP_TAC[SUM_RMUL]); (ASM_CASES_TAC `h <= &0`); (NEW_GOAL `~(x IN rcone_gt u0 (u1:real^3) a)`); (REWRITE_TAC[rcone_gt; rconesgn; IN; IN_ELIM_THM]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (REAL_ARITH `&0 <= x /\ y <= &0 ==> ~(y > x)`)); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (ASM_REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `a * b * c <= &0 <=> &0 <= b * c * (--a)`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (ASM_REAL_ARITH_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ABBREV_TAC `y = inv (h) % vsum (s DELETE u0) (\v:real^3. u v % v)`); (NEW_GOAL `?t. t + h = &1 /\ x = t % u0 + h % (y:real^3)`); (EXISTS_TAC `&1 - h`); (STRIP_TAC); (REAL_ARITH_TAC); (ASM_CASES_TAC `u0:real^3 IN s`); (REWRITE_TAC[GSYM (ASSUME `sum s (u:real^3->real) = &1`)]); (EXPAND_TAC "h"); (REWRITE_WITH `sum s u = sum (u0 INSERT (s DELETE u0)) (u:real^3->real)`); (REWRITE_WITH `(u0 INSERT (s DELETE u0:real^3)) = s`); (ASM_SET_TAC[]); (NEW_GOAL `FINITE (s DELETE u0:real^3)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `s:real^3->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]); (SIMP_TAC[Marchal_cells_2_new.SUM_CLAUSES_alt; ASSUME `FINITE (s DELETE u0:real^3)`]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN SET_TAC[]); (ASM_MESON_TAC[]); (REWRITE_TAC[REAL_ARITH `(a + b:real) - b = a`]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_MUL_ASSOC]); (REWRITE_WITH `h * inv h = &1`); (NEW_GOAL `~(h = &0)`); (ASM_REAL_ARITH_TAC); (ASM_SIMP_TAC[Trigonometry2.REAL_MUL_LRINV]); (REWRITE_TAC[VECTOR_MUL_LID]); (EXPAND_TAC "x"); (REWRITE_WITH `vsum s (\v. u v % v) = vsum (u0 INSERT (s DELETE u0)) (\v:real^3. u v % v)`); (REWRITE_WITH `(u0 INSERT (s DELETE u0:real^3)) = s`); (ASM_SET_TAC[]); (SIMP_TAC[Marchal_cells_2_new.VSUM_CLAUSES_alt; ASSUME `FINITE (s DELETE u0:real^3)`]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN SET_TAC[]); (ASM_MESON_TAC[]); (REFL_TAC); (NEW_GOAL `h = &1`); (EXPAND_TAC "h" THEN REWRITE_WITH `s DELETE u0:real^3 = s`); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "y" THEN REWRITE_TAC[ASSUME `h = &1`]); (REWRITE_WITH `s DELETE u0:real^3 = s`); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[REAL_ARITH `inv (&1) = &1 /\ &1 - &1 = &0`]); (VECTOR_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `~(y:real^3 IN S)`); (STRIP_TAC); (NEW_GOAL `x IN aff_ge_alt {u0:real^3} S`); (REWRITE_TAC[IN; aff_ge_alt; lin_combo]); (ABBREV_TAC `f = (\v:real^3. if v = u0 then t else if v = y then h else &0)`); (EXISTS_TAC `f:real^3->real`); (EXISTS_TAC `{y:real^3}`); (REPEAT STRIP_TAC); (REWRITE_TAC[FINITE_SING]); (ASM_SET_TAC[]); (REWRITE_TAC[SET_RULE `{a} UNION {b} = {a, b}`]); (REWRITE_WITH `vsum {u0:real^3, y} (\v. f v % v) = (\v. f v % v) u0 + (\v. f v % v) y`); (MATCH_MP_TAC Geomdetail.VSUM_DIS2); (STRIP_TAC); (NEW_GOAL `~(u0:real^3 IN S)`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `v IN {a,b} <=> v = a \/ v = b`]); (STRIP_TAC); (NEW_GOAL `u0 IN voronoi_closed V (u1:real^3)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,u1) <= dist (u0,u0:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_REFL; REAL_ARITH `~(a <= b) <=> b < a`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (REWRITE_WITH `(f:real^3->real) u0 = t`); (EXPAND_TAC "f"); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (REWRITE_WITH `(f:real^3->real) y = h`); (EXPAND_TAC "f"); (COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `~(u0:real^3 IN S)`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `v IN {a,b} <=> v = a \/ v = b`]); (STRIP_TAC); (NEW_GOAL `u0 IN voronoi_closed V (u1:real^3)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,u1) <= dist (u0,u0:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_REFL; REAL_ARITH `~(a <= b) <=> b < a`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f"); (COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `~({y:real^3} u0)`); (REWRITE_WITH `~({y} u0) <=> ~(u0:real^3 IN {y})`); (MESON_TAC[IN]); (REWRITE_TAC[IN_SING]); (STRIP_TAC); (NEW_GOAL `~(u0:real^3 IN S)`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `v IN {a,b} <=> v = a \/ v = b`]); (STRIP_TAC); (NEW_GOAL `u0 IN voronoi_closed V (u1:real^3)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,u1) <= dist (u0,u0:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_REFL; REAL_ARITH `~(a <= b) <=> b < a`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (COND_CASES_TAC); (ASM_REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_TAC[SET_RULE `{a} UNION {b} = {a,b}`]); (REWRITE_WITH `sum {u0:real^3, y} f = f u0 + f y`); (MATCH_MP_TAC Geomdetail.SUM_DIS2); (STRIP_TAC); (NEW_GOAL `~(u0:real^3 IN S)`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `v IN {a,b} <=> v = a \/ v = b`]); (STRIP_TAC); (NEW_GOAL `u0 IN voronoi_closed V (u1:real^3)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,u1) <= dist (u0,u0:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_REFL; REAL_ARITH `~(a <= b) <=> b < a`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (REWRITE_WITH `(f:real^3->real) u0 = t`); (EXPAND_TAC "f"); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (REWRITE_WITH `(f:real^3->real) y = h`); (EXPAND_TAC "f"); (COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `~(u0:real^3 IN S)`); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `v IN {a,b} <=> v = a \/ v = b`]); (STRIP_TAC); (NEW_GOAL `u0 IN voronoi_closed V (u1:real^3)`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,u1) <= dist (u0,u0:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_REFL; REAL_ARITH `~(a <= b) <=> b < a`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (ASM_REWRITE_TAC[]); (ASM_MESON_TAC[]); (NEW_GOAL `y:real^3 IN S2`); (EXPAND_TAC "S2"); (NEW_GOAL `y:real^3 IN S1`); (NEW_GOAL `y:real^3 IN affine hull S`); (REWRITE_TAC[AFFINE_HULL_EXPLICIT_ALT]); (REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `s DELETE u0:real^3`); (EXISTS_TAC `(\v:real^3. inv h * u v)`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[FINITE_DELETE]); (ASM_SET_TAC[]); (REWRITE_TAC[SUM_LMUL]); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[Trigonometry2.REAL_MUL_LRINV; REAL_ARITH `~(h <= &0) ==> ~(h = &0)`]); (REWRITE_TAC[GSYM VECTOR_MUL_ASSOC]); (ASM_SIMP_TAC[VSUM_LMUL; FINITE_DELETE]); (NEW_GOAL `affine hull S1 = S1:real^3->bool`); (REWRITE_TAC[AFFINE_HULL_EQ]); (EXPAND_TAC "S1" THEN REWRITE_TAC[AFFINE_HYPERPLANE]); (NEW_GOAL `affine hull S SUBSET affine hull (S1:real^3->bool)`); (MATCH_MP_TAC Marchal_cells_2_new.AFFINE_SUBSET_KY_LEMMA); (EXPAND_TAC "S"); (REWRITE_TAC[VORONOI_LIST; VORONOI_SET; set_of_list; SET_RULE `INTERS {f x | x IN {a, b}} = f a INTER f b`]); (DEL_TAC THEN EXPAND_TAC "S1"); (MATCH_MP_TAC Pack2.INTER_VORONOI_SUBSET_BISECTOR); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (NEW_GOAL `relative_interior S SUBSET S:real^3->bool`); (REWRITE_TAC[RELATIVE_INTERIOR_SUBSET]); (ASM_SET_TAC[]); (* OK until here *) (* ========================================================================= *) (NEW_GOAL `dist (z,u0) <= dist (y,u0:real^3)`); (ONCE_REWRITE_TAC[DIST_SYM]); (ASM_SIMP_TAC[]); (UNDISCH_TAC `x:real^3 IN rcone_gt u0 u1 a`); (REWRITE_TAC[rcone_gt; rconesgn; IN; IN_ELIM_THM]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `dist (t % u0 + h % y,u0) = h * dist (y, u0:real^3)`); (REWRITE_TAC[dist]); (REWRITE_WITH `(t % u0 + h % y:real^3) - u0 = (t % u0 + h % y) - (t + h) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `(t % u0 + h % y) - (t + h) % u0 = h % (y - u0)`]); (REWRITE_TAC[NORM_MUL]); (REWRITE_WITH `abs h = h`); (REWRITE_TAC[REAL_ABS_REFL]); (ASM_REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `~(a > b) <=> a <= b`]); (REWRITE_WITH `h * dist (p,u0:real^3) * dist (u1,u0) = (h * dist (z,u0)) * dist (u1,u0) * a`); (EXPAND_TAC "a"); (REWRITE_TAC[REAL_ARITH `(a * b) * c * d / b = (a * d * c) * (b / b)`]); (REWRITE_WITH `dist (z,u0) / dist (z,u0:real^3) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[DIST_EQ_0]); (STRIP_TAC); (NEW_GOAL `~(u0:real^3 IN S1)`); (EXPAND_TAC "S1" THEN REWRITE_TAC[IN; IN_ELIM_THM; NORM_POW_2]); (REWRITE_TAC[REAL_ARITH `a = b - c <=> a + c - b = &0`]); (REWRITE_TAC[VECTOR_ARITH `&2 % (u0 - u1) dot u0 + u1 dot u1 - u0 dot u0 = (u0 - u1) dot (u0 - u1)`]); (REWRITE_TAC[DOT_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> a = b`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `z:real^3 IN S1`); (ASM_SET_TAC[]); (ASM_MESON_TAC[]); (REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `(a * x) * b * c <= (a * y) * b * c <=> &0 <= a * b * c *(y - x)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (ASM_REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `W = aff_ge_alt {u0:real^3} S`); (ABBREV_TAC `c = max b (hl[u0;u1:real^3] / sqrt (&2))`); (NEW_GOAL `&0 < c /\ c < &1`); (EXPAND_TAC "c" THEN REWRITE_TAC[REAL_LT_MAX]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "c" THEN REWRITE_TAC[REAL_MAX_LT]); (STRIP_TAC); (ASM_REWRITE_TAC[]); (REWRITE_WITH `hl [u0; u1:real^3] / sqrt (&2) < &1 <=> hl [u0; u1] < &1 * sqrt (&2)`); (MATCH_MP_TAC REAL_LT_LDIV_EQ); (ASM_SIMP_TAC[SQRT_POS_LT; REAL_ARITH `&0 < &2`]); (ASM_REAL_ARITH_TAC); (NEW_GOAL `rcone_gt u0 u1 c SUBSET W INTER (rcone_gt u0 u1 (hl [u0; u1:real^3] / sqrt (&2)))`); (REWRITE_TAC[SUBSET_INTER]); (STRIP_TAC); (NEW_GOAL `rcone_gt (u0:real^3) u1 c SUBSET rcone_gt u0 u1 b`); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "c" THEN REAL_ARITH_TAC); (ASM_SET_TAC[]); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "c" THEN REAL_ARITH_TAC); (ABBREV_TAC `C = ball (u0:real^3,&1) INTER rcone_gt u0 u1 c`); (NEW_GOAL `C SUBSET UNIONS {rogers V vl | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}`); (REWRITE_TAC[SUBSET]); (REPEAT STRIP_TAC); (NEW_GOAL `x IN ball (u0:real^3,&1) /\ x IN aff_ge_alt {u0} S`); (ASM_SET_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (* OK until here *) (* ===========================================================================*) (NEW_GOAL `(x:real^3) IN convex hull (u0 INSERT S)`); (REWRITE_TAC[CONVEX_HULL_EXPLICIT; IN; IN_ELIM_THM]); (UP_ASM_TAC THEN REWRITE_TAC[IN; aff_ge_alt; lin_combo]); (REPEAT STRIP_TAC); (EXISTS_TAC `{u0:real^3} UNION q`); (EXISTS_TAC `f:real^3->real`); (REPEAT STRIP_TAC); (REWRITE_TAC[SET_RULE `{a} UNION b = a INSERT b`; FINITE_INSERT]); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (ASM_CASES_TAC `x':real^3 IN q`); (FIRST_ASSUM MATCH_MP_TAC); (UP_ASM_TAC THEN MESON_TAC[IN]); (REWRITE_WITH `x' = u0:real^3`); (NEW_GOAL `x' IN ({u0:real^3} UNION q)`); (ASM_REWRITE_TAC[IN]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[REAL_ARITH `&0 <= x <=> ~(x < &0)`]); (STRIP_TAC); (UNDISCH_TAC `x IN ball (u0:real^3,&1)`); (ASM_REWRITE_TAC[IN_BALL; SET_RULE `{u} UNION q = u INSERT (q DELETE u)`]); (REWRITE_WITH `vsum (u0 INSERT (q DELETE u0:real^3)) (\v. f v % v) = (if u0 IN (q DELETE u0) then vsum (q DELETE u0) (\v. f v % v) else (\v. f v % v) u0 + vsum (q DELETE u0) (\v. f v % v))`); (MATCH_MP_TAC Marchal_cells_2_new.VSUM_CLAUSES_alt); (ASM_REWRITE_TAC[FINITE_DELETE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN SET_TAC[]); (ASM_MESON_TAC[]); (ONCE_REWRITE_TAC[DIST_SYM]); (REWRITE_TAC[dist]); (REWRITE_WITH `!a. a - u0 = a - (sum ({u0:real^3} UNION q) f) % u0`); (ASM_REWRITE_TAC[]); (VECTOR_ARITH_TAC); (NEW_GOAL `sum ({u0} UNION q) f = f u0 + sum (q DELETE u0:real^3) f`); (REWRITE_TAC[SET_RULE `{u} UNION q = u INSERT (q DELETE u)`]); (REWRITE_WITH `sum (u0 INSERT (q DELETE u0:real^3)) f = (if u0 IN (q DELETE u0) then sum (q DELETE u0) f else f u0 + sum (q DELETE u0) f)`); (MATCH_MP_TAC Marchal_cells_2_new.SUM_CLAUSES_alt); (ASM_REWRITE_TAC[FINITE_DELETE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN SET_TAC[]); (ASM_MESON_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ADD_RDISTRIB; VECTOR_ARITH `(a + b) - (a + c:real^3) = b - c`; ASSUME `sum ({u0} UNION q) f = f u0 + sum (q DELETE u0:real^3) f`; ]); (ABBREV_TAC `h = sum (q DELETE u0:real^3) f`); (ABBREV_TAC `y = inv (h) % vsum (q DELETE u0) (\v:real^3. f v % v)`); (NEW_GOAL `h > &1`); (ASM_REAL_ARITH_TAC); (REWRITE_WITH `vsum (q DELETE u0) (\v. f v % v) = h % y:real^3`); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_MUL_ASSOC]); (REWRITE_WITH `h * inv h = &1`); (ASM_SIMP_TAC [Trigonometry2.REAL_MUL_LRINV; REAL_ARITH `h > &1 ==> ~(h = &0)`]); (VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `h % a - h % b = h % (a - b)`; NORM_MUL]); (REWRITE_TAC[REAL_ARITH `~(a < b) <=> b <= a`]); (NEW_GOAL `norm (p - u0) <= norm (y - u0:real^3)`); (MATCH_MP_TAC Tactics_jordan.REAL_POW_2_LE); (REWRITE_TAC[NORM_POS_LE]); (REWRITE_WITH `norm (y - u0) pow 2 = norm (p - u0) pow 2 + norm (y - p:real^3) pow 2`); (MATCH_MP_TAC PYTHAGORAS); (REWRITE_TAC[orthogonal]); (REWRITE_WITH `p = circumcenter (set_of_list [u0;u1:real^3])`); (ASM_REWRITE_TAC[set_of_list]); (ONCE_REWRITE_TAC[DOT_SYM]); (MATCH_MP_TAC Rogers.MHFTTZN4); (EXISTS_TAC `V:real^3->bool` THEN EXISTS_TAC `1`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[ASSUME `voronoi_list V [u0; u1] = S`]); (REWRITE_TAC[AFFINE_HULL_EXPLICIT_ALT; IN; IN_ELIM_THM]); (EXISTS_TAC `q DELETE u0:real^3`); (EXISTS_TAC `(\v:real^3. inv h * f v)`); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[FINITE_DELETE]); (ASM_SET_TAC[]); (ASM_REWRITE_TAC[SUM_LMUL]); (ASM_SIMP_TAC [Trigonometry2.REAL_MUL_LRINV; REAL_ARITH `h > &1 ==> ~(h = &0)`]); (REWRITE_TAC[GSYM VECTOR_MUL_ASSOC]); (ASM_REWRITE_TAC[VSUM_LMUL]); (REWRITE_TAC[set_of_list]); (NEW_GOAL `{u0, u1:real^3} SUBSET affine hull {u0, u1}`); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (ASM_SET_TAC[]); (REWRITE_TAC[REAL_ARITH `a <= a + b <=> &0 <= b`; NORM_POW_2; DOT_POS_LE]); (NEW_GOAL `&1 <= norm (p - u0:real^3)`); (EXPAND_TAC "p"); (REWRITE_TAC[CIRCUMCENTER_2; midpoint; VECTOR_ARITH `inv (&2) % (u0 + u1) - u0 = inv (&2) % (u1 - u0)`; NORM_MUL; REAL_ARITH `abs (inv(&2)) = inv (&2)`]); (REWRITE_TAC[GSYM dist]); (REWRITE_WITH `&1 = inv (&2) * &2`); (REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `inv (&2) * &2 <= inv (&2) * a <=> &2 <= a`]); (MP_TAC (ASSUME `packing (V:real^3->bool)`)); (REWRITE_TAC[packing] THEN STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[] THEN ASM_SET_TAC[]); (REWRITE_WITH `abs h = h`); (ASM_REAL_ARITH_TAC); (NEW_GOAL `h <= h * norm (y - u0:real^3)`); (REWRITE_TAC[REAL_ARITH `h <= h * a <=> &0 <= h * (a - &1)`]); (MATCH_MP_TAC REAL_LE_MUL); (ASM_REAL_ARITH_TAC); (ASM_REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (* ========================================================================== *) (NEW_GOAL `~(S:real^3->bool = {})`); (STRIP_TAC); (NEW_GOAL `~(aff_dim (u0:real^3 INSERT S) = &3)`); (REWRITE_TAC[ASSUME `S:real^3->bool = {}`; AFF_DIM_SING]); (ARITH_TAC); (ASM_MESON_TAC[]); (SWITCH_TAC); (UP_ASM_TAC THEN SIMP_TAC[CONVEX_HULL_INSERT; ASSUME `~(S:real^3->bool = {})`]); (REWRITE_WITH `convex hull S = S:real^3->bool`); (REWRITE_TAC[CONVEX_HULL_EQ]); (EXPAND_TAC "S" THEN REWRITE_TAC[Packing3.CONVEX_VORONOI_LIST]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[IN_UNIONS; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `rogers V vl`); (REPEAT STRIP_TAC); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[Marchal_cells_2.ROGERS_EXPLICIT]); (REWRITE_TAC[CONVEX_HULL_4; IN_ELIM_THM]); (UNDISCH_TAC `(t:real^3->bool) b'`); (ASM_REWRITE_TAC[CONVEX_HULL_3; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `u:real`); (EXISTS_TAC `v * u'`); (EXISTS_TAC `v * v'`); (EXISTS_TAC `v * w`); (ASM_SIMP_TAC[REAL_LE_MUL]); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `u + v * u' + v * v' + v * w = u + v * (u' + v' +w)`]); (ASM_REWRITE_TAC[]); (ASM_REAL_ARITH_TAC); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (VECTOR_ARITH_TAC); (* ========================================================================= *) (* ========================================================================== *) (NEW_GOAL `!X. mcell_set V X /\ ~NULLSET (X INTER C) ==> (?k vl. 2 <= k /\ barV V 3 vl /\ X = mcell k V vl /\ truncate_simplex 1 vl = [u0; u1])`); (REWRITE_TAC[mcell_set_2; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `~NULLSET (X INTER UNIONS {rogers V vl | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]})`); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER C)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER UNIONS {rogers V vl | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[INTER_UNIONS]); (STRIP_TAC); (NEW_GOAL `!s. ~NULLSET (UNIONS s) /\ FINITE s ==> (?t. t IN s /\ ~NULLSET t)`); (MESON_TAC[NEGLIGIBLE_UNIONS]); (ABBREV_TAC `St = {X INTER x | x IN {rogers V vl | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}}`); (NEW_GOAL `?t. t IN St /\ ~NULLSET t`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "St"); (ABBREV_TAC `Sr = {rogers V vl | vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}`); (ABBREV_TAC `f = (\x:real^3->bool. X INTER x)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y:real^3->bool | ?x:real^3->bool. x IN Sr /\ y = f x }`); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (ABBREV_TAC `Ss = {vl | barV V 3 vl /\ truncate_simplex 1 vl = [u0; u1]}`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?vl. vl IN Ss /\ y = rogers V vl}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (ABBREV_TAC `Sx = V INTER ball (u0:real^3, &4)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?u0 u1 u2 u3:real^3. u0 IN Sx /\ u1 IN Sx /\ u2 IN Sx /\ u3 IN Sx /\ y = [u0; u1; u2; u3]}`); (STRIP_TAC); (MATCH_MP_TAC Ajripqn.FINITE_SET_LIST_LEMMA); (EXPAND_TAC "Sx"); (MATCH_MP_TAC Pack2.KIUMVTC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "Ss"); (REWRITE_TAC[SUBSET; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?v0 v1 v2 v3. x = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v0:real^3`); (EXISTS_TAC `v1:real^3`); (EXISTS_TAC `v2:real^3`); (EXISTS_TAC `v3:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `{v0, v1, v2, v3:real^3} SUBSET Sx`); (EXPAND_TAC "Sx"); (REWRITE_TAC[SUBSET_INTER]); (REWRITE_WITH `{v0, v1, v2, v3:real^3} = set_of_list x`); (ASM_REWRITE_TAC[set_of_list]); (STRIP_TAC); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (MATCH_MP_TAC Qzyzmjc.BARV_3_IMP_FINITE_lemma2); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (NEW_GOAL `HD (truncate_simplex 1 x) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 x) = v0:real^3`); (REWRITE_TAC[ASSUME `x = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (REWRITE_WITH `u0 = v0:real^3`); (ASM_MESON_TAC[]); (REWRITE_TAC[set_of_list] THEN SET_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (EXPAND_TAC "Sr" THEN EXPAND_TAC "Ss"); (SET_TAC[]); (REWRITE_WITH `{X INTER x:real^3->bool | x IN Sr} = {f x | x IN Sr}`); (EXPAND_TAC "f"); (REFL_TAC); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "St" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `x SUBSET UNIONS {mcell i V vl | i <= 4}`); (ASM_REWRITE_TAC[SUBSET; IN_UNIONS; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?i. i <= 4 /\ x' IN mcell i V vl`); (MATCH_MP_TAC Sltstlo.SLTSTLO1); (ASM_REWRITE_TAC[IN]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `mcell i' V vl`); (STRIP_TAC); (EXISTS_TAC `i':num` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[IN]); (NEW_GOAL `~NULLSET (X INTER UNIONS {mcell i V vl | i <= 4})`); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (t)`); (REWRITE_TAC[ASSUME `t:real^3->bool = X INTER x`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER UNIONS {mcell i V vl | i <= 4}`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[INTER_UNIONS]); (STRIP_TAC); (NEW_GOAL `!s. ~NULLSET (UNIONS s) /\ FINITE s ==> (?t. t IN s /\ ~NULLSET t)`); (MESON_TAC[NEGLIGIBLE_UNIONS]); (ABBREV_TAC `Sx = {X INTER x | x IN {mcell i V vl | i <= 4}}`); (NEW_GOAL `?t. t IN Sx /\ ~NULLSET t`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "Sx"); (ABBREV_TAC `Sy = {mcell i V vl | i <= 4}`); (ABBREV_TAC `f = (\x:real^3->bool. X INTER x)`); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y:real^3->bool | ?x:real^3->bool. x IN Sy /\ y = f x }`); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (EXPAND_TAC "Sy"); (REWRITE_TAC[GSYM IN_NUMSEG_0]); (ABBREV_TAC `g = (\i:num. mcell i V vl)`); (REWRITE_WITH `{mcell i V vl | i IN 0..4} = {g i | i IN 0..4}`); (EXPAND_TAC "g" THEN REWRITE_TAC[]); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y:real^3->bool | ?i. i IN 0..4 /\ y = g i}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (REWRITE_TAC[FINITE_NUMSEG]); (SET_TAC[]); (REWRITE_WITH `{X INTER x:real^3->bool | x IN Sy} = {f x | x IN Sy}`); (EXPAND_TAC "f" THEN REWRITE_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Sx" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (* ========================================================================= *) (NEW_GOAL `i = i' /\ mcell i V ul = mcell i' V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[GSYM Ajripqn.UP_TO_4_KY_LEMMA]); (REPEAT STRIP_TAC); (UNDISCH_TAC `ul IN barV V 3` THEN REWRITE_TAC[IN]); (UNDISCH_TAC `~NULLSET t'`); (ASM_REWRITE_TAC[]); (EXISTS_TAC `i:num` THEN EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (* ========================================================================= *) (ASM_CASES_TAC `i' = 0`); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER C)`); (REWRITE_TAC[]); (REWRITE_WITH `X INTER C = {}:real^3->bool`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell0]); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `C SUBSET ball (u0:real^3, sqrt (&2))`); (NEW_GOAL `ball (u0:real^3, &1) SUBSET ball (u0, sqrt (&2))`); (MATCH_MP_TAC SUBSET_BALL); (MATCH_MP_TAC (REAL_ARITH `a < b ==> a <= b`)); (REWRITE_TAC[Marchal_cells_2_new.ZERO_LT_SQRT_2]); (ASM_SET_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (ASM_MESON_TAC[]); (ASM_CASES_TAC `i' = 1`); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER C)`); (REWRITE_TAC[]); (REWRITE_WITH `X INTER C = {}:real^3->bool`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell1]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. vl = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[HD; TL]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 vl) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 vl) = v0:real^3`); (REWRITE_TAC[ASSUME `vl = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (ASM_MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = v1:real^3`); (REWRITE_TAC[ASSUME `vl = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (ASM_MESON_TAC[]); (NEW_GOAL `C SUBSET (rcone_gt u0 u1 (hl [u0:real^3; u1] / sqrt (&2)))`); (EXPAND_TAC "C"); (SET_TAC[ASSUME `rcone_gt u0 u1 c SUBSET W INTER rcone_gt u0 u1 (hl [u0:real^3; u1] / sqrt (&2))`]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_ARITH_TAC); (* ========================================================================= *) (ABBREV_TAC `f1 = (\ul. dist (u0:real^3, closest_point (affine hull {u1, EL 2 ul, mxi V ul}) u0))`); (ABBREV_TAC `P1 = { (f1:(real^3)list->real) ul |ul | barV V 3 ul /\ ~NULLSET (mcell 3 V ul INTER C) /\ truncate_simplex 1 ul = [u0; u1]}`); (NEW_GOAL `~(P1 = {}) ==> (?b:real. b IN P1 /\ (!x. x IN P1 ==> b <= x))`); (STRIP_TAC); (MATCH_MP_TAC INF_FINITE_LEMMA); (ASM_REWRITE_TAC[]); (EXPAND_TAC "P1"); (ONCE_REWRITE_TAC [SET_RULE `{f x| x | P x} = {f x | x IN {y | P y}}`]); (ONCE_REWRITE_TAC [SET_RULE `{f x| x IN s} = {y | ?x. x IN s /\ y = f x}`]); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?v0:real^3 v1 u2 u3. v0 IN (V INTER ball (u0:real^3, &4)) /\ v1 IN (V INTER ball (u0, &4)) /\ u2 IN (V INTER ball (u0, &4)) /\ u3 IN (V INTER ball (u0, &4)) /\ y = [v0; v1; u2; u3]}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_SET_LIST_LEMMA); (ASM_SIMP_TAC[FINITE_PACK_LEMMA]); (REWRITE_TAC[SUBSET] THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?v0 v1 u2 u3. x = [v0; v1; u2; u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v0:real^3` THEN EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (x:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (x:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `set_of_list x SUBSET ball (u0:real^3,&4)`); (MATCH_MP_TAC Qzyzmjc.BARV_3_IMP_FINITE_lemma2); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (NEW_GOAL `set_of_list x SUBSET V:real^3->bool`); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (ABBREV_TAC `r1 = (if (P1 = {}:real->bool) then &1 else (@b. b IN P1 /\ (!x. x IN P1 ==> b <= x)))`); (NEW_GOAL `&0 < r1`); (EXPAND_TAC "r1"); (COND_CASES_TAC); (REAL_ARITH_TAC); (NEW_GOAL `?b:real. b IN P1 /\ (!x. x IN P1 ==> b <= x)`); (ASM_SIMP_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `P = (\b:real. b IN P1 /\ (!x. x IN P1 ==> b <= x))`); (ABBREV_TAC `zz = (@) (P:real->bool)`); (NEW_GOAL `(P:real->bool) zz`); (EXPAND_TAC "zz"); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b':real`); (EXPAND_TAC "P" THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "P" THEN REWRITE_TAC[]); (EXPAND_TAC "P1" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f1"); (MATCH_MP_TAC DIST_POS_LT); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `closest_point (affine hull {u1, EL 2 ul, mxi V ul}) u0 = u0 <=> u0 IN (affine hull {u1:real^3, EL 2 ul, mxi V ul})`); (MATCH_MP_TAC CLOSEST_POINT_REFL); (REWRITE_TAC[CLOSED_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_EQ_EMPTY] THEN SET_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 3 V ul INTER C)`); (REWRITE_TAC[] THEN MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 3 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (REWRITE_TAC[MCELL_EXPLICIT; mcell3]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (ASM_MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, mxi V [u0; u1; v2; v3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_WITH `affine hull {u0, u1, v2, mxi V [u0; u1; v2; v3]} = affine hull {u1, v2, mxi V [u0; u1; v2; v3]}`); (MATCH_MP_TAC AFFINE_HULL_3_INSERT); (REWRITE_WITH `affine hull {u1, v2, mxi V [u0; u1; v2; v3]} = affine hull {u1, EL 2 ul, mxi V ul}`); (ASM_REWRITE_TAC[EL; ARITH_RULE `2 = SUC 1 /\ 1 = SUC 0`; HD; TL]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (ASM_MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (* ========================================================================= *) (ABBREV_TAC `f2 = (\ul. dist (u0:real^3, closest_point (affine hull {u1, EL 2 ul, EL 3 ul}) u0))`); (ABBREV_TAC `P2 = { (f2:(real^3)list->real) ul |ul | barV V 3 ul /\ ~NULLSET (mcell 4 V ul INTER C) /\ truncate_simplex 1 ul = [u0; u1]}`); (NEW_GOAL `~(P2 = {}) ==> (?b:real. b IN P2 /\ (!x. x IN P2 ==> b <= x))`); (STRIP_TAC); (MATCH_MP_TAC INF_FINITE_LEMMA); (ASM_REWRITE_TAC[]); (EXPAND_TAC "P2"); (ONCE_REWRITE_TAC [SET_RULE `{f x| x | P x} = {f x | x IN {y | P y}}`]); (ONCE_REWRITE_TAC [SET_RULE `{f x| x IN s} = {y | ?x. x IN s /\ y = f x}`]); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?v0:real^3 v1 u2 u3. v0 IN (V INTER ball (u0:real^3, &4)) /\ v1 IN (V INTER ball (u0, &4)) /\ u2 IN (V INTER ball (u0, &4)) /\ u3 IN (V INTER ball (u0, &4)) /\ y = [v0; v1; u2; u3]}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_SET_LIST_LEMMA); (ASM_SIMP_TAC[FINITE_PACK_LEMMA]); (REWRITE_TAC[SUBSET] THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?v0 v1 u2 u3. x = [v0; v1; u2; u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v0:real^3` THEN EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (x:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (x:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `set_of_list x SUBSET ball (u0:real^3,&4)`); (MATCH_MP_TAC Qzyzmjc.BARV_3_IMP_FINITE_lemma2); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (NEW_GOAL `set_of_list x SUBSET V:real^3->bool`); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (ABBREV_TAC `r2 = (if (P2 = {}:real->bool) then &1 else (@b. b IN P2 /\ (!x. x IN P2 ==> b <= x)))`); (NEW_GOAL `&0 < r2`); (EXPAND_TAC "r2"); (COND_CASES_TAC); (REAL_ARITH_TAC); (NEW_GOAL `?b:real. b IN P2 /\ (!x. x IN P2 ==> b <= x)`); (ASM_SIMP_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `P = (\b:real. b IN P2 /\ (!x. x IN P2 ==> b <= x))`); (ABBREV_TAC `zz = (@) (P:real->bool)`); (NEW_GOAL `(P:real->bool) zz`); (EXPAND_TAC "zz"); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b':real`); (EXPAND_TAC "P" THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "P" THEN REWRITE_TAC[]); (EXPAND_TAC "P2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f2"); (MATCH_MP_TAC DIST_POS_LT); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `closest_point (affine hull {u1, EL 2 ul, EL 3 ul}) u0 = u0 <=> u0 IN (affine hull {u1:real^3, EL 2 ul, EL 3 ul})`); (MATCH_MP_TAC CLOSEST_POINT_REFL); (REWRITE_TAC[CLOSED_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_EQ_EMPTY] THEN SET_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 4 V ul INTER C)`); (REWRITE_TAC[] THEN MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 4 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_WITH `affine hull {u0, u1, v2, v3:real^3} = affine hull {u1, v2, v3}`); (MATCH_MP_TAC AFFINE_HULL_3_INSERT); (REWRITE_WITH `affine hull {u1, v2, v3:real^3} = affine hull {u1, EL 2 ul, EL 3 ul}`); (ASM_REWRITE_TAC[EL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; HD; TL]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (* ========================================================================= *) (ABBREV_TAC `r = min (&1) (min r1 r2)`); (NEW_GOAL `&0 < r`); (EXPAND_TAC "r"); (UNDISCH_TAC `&0 < r1` THEN UNDISCH_TAC `&0 < r2` THEN REAL_ARITH_TAC); (* ========================================================================= *) (ABBREV_TAC `f3 = (\ul. (((smallest_angle_line (EL 2 ul) (mxi V ul) u0 u1) - u0) dot (u1 - u0)) / (norm ((smallest_angle_line (EL 2 ul) (mxi V ul) u0 u1) - u0) * norm (u1 - u0)))`); (ABBREV_TAC `P3 = {(f3:(real^3)list->real) ul |ul | barV V 3 ul /\ ~NULLSET (mcell 3 V ul INTER C) /\ truncate_simplex 1 ul = [u0; u1]}`); (NEW_GOAL `~(P3 = {}) ==> (?b:real. b IN P3 /\ (!x. x IN P3 ==> x <= b))`); (STRIP_TAC); (MATCH_MP_TAC SUP_FINITE_LEMMA); (ASM_REWRITE_TAC[]); (EXPAND_TAC "P3"); (ONCE_REWRITE_TAC [SET_RULE `{f x| x | P x} = {f x | x IN {y | P y}}`]); (ONCE_REWRITE_TAC [SET_RULE `{f x| x IN s} = {y | ?x. x IN s /\ y = f x}`]); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?v0:real^3 v1 u2 u3. v0 IN (V INTER ball (u0:real^3, &4)) /\ v1 IN (V INTER ball (u0, &4)) /\ u2 IN (V INTER ball (u0, &4)) /\ u3 IN (V INTER ball (u0, &4)) /\ y = [v0; v1; u2; u3]}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_SET_LIST_LEMMA); (ASM_SIMP_TAC[FINITE_PACK_LEMMA]); (REWRITE_TAC[SUBSET] THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?v0 v1 u2 u3. x = [v0; v1; u2; u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v0:real^3` THEN EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (x:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (x:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `set_of_list x SUBSET ball (u0:real^3,&4)`); (MATCH_MP_TAC Qzyzmjc.BARV_3_IMP_FINITE_lemma2); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (NEW_GOAL `set_of_list x SUBSET V:real^3->bool`); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (ABBREV_TAC `d1 = (if (P3 = {}:real->bool) then c else (@b. b IN P3 /\ (!x. x IN P3 ==> x <= b)))`); (NEW_GOAL `d1 < &1`); (EXPAND_TAC "d1"); (COND_CASES_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `?b:real. b IN P3 /\ (!x. x IN P3 ==> x <= b)`); (ASM_SIMP_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `P = (\b:real. b IN P3 /\ (!x. x IN P3 ==> x <= b))`); (ABBREV_TAC `zz = (@) (P:real->bool)`); (NEW_GOAL `(P:real->bool) zz`); (EXPAND_TAC "zz"); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b':real`); (EXPAND_TAC "P" THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "P" THEN REWRITE_TAC[]); (EXPAND_TAC "P3" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f3"); (ABBREV_TAC `xx = smallest_angle_line (EL 2 ul) (mxi V ul) u0 u1`); (MATCH_MP_TAC REAL_DIV_LT_1_TACTICS); (STRIP_TAC); (MATCH_MP_TAC (REAL_ARITH `&0 <= a /\ ~(a = &0) ==> &0 < a`)); (STRIP_TAC); (SIMP_TAC[REAL_LE_MUL; NORM_POS_LE]); (REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> a = b`]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "xx"); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN REWRITE_TAC[smallest_angle_line; smallest_angle_set]); (STRIP_TAC); (ABBREV_TAC `Q = (\x:real^3. x IN convex hull {EL 2 ul, mxi V ul} /\ (!y. y IN convex hull {EL 2 ul, mxi V ul} ==> ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)) <= ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0))))`); (NEW_GOAL `(Q:real^3->bool) u0`); (REWRITE_TAC[ASSUME `u0 = (@) (Q:real^3->bool)`]); (MATCH_MP_TAC SELECT_AX); (EXPAND_TAC "Q"); (MATCH_MP_TAC SMALLEST_ANGLE_LINE_EXISTS); (STRIP_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v1 v2 v3. ul = [u0; v1; v2; v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (ul:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (ul:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[ASSUME `v0 = u0:real^3`]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `EL 2 ul = v2:real^3`); (ASM_REWRITE_TAC[EL;HD;TL; ARITH_RULE `2 = SUC 1 /\ 1 = SUC 0`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 3 V ul INTER C)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 3 V ul` THEN STRIP_TAC); (REWRITE_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; ASSUME `ul = [u0; v1; v2; v3:real^3]`; SET_RULE `{a,b,c} UNION {d} = {a,b, c,d}`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, v1, v2, mxi V ul}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {v2, mxi V ul}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `mxi V ul`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q"); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 3 V ul INTER C)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 3 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (REWRITE_TAC[MCELL_EXPLICIT; mcell3]); (COND_CASES_TAC); (NEW_GOAL `?v2 v3. ul = [u0;u1;v2;v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (REWRITE_TAC[ASSUME `ul = [v0;v1;v2;v3:real^3]`]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_TAC[GSYM (ASSUME `u0 = (@) (Q:real^3->bool)`)]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, mxi V ul}`); (REWRITE_TAC[ASSUME `ul = [u0; u1; v2; v3:real^3]`; CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_WITH `affine hull {u0, u1, v2, mxi V [u0; u1; v2; v3]} = affine hull {u1, v2, mxi V [u0; u1; v2; v3]}`); (MATCH_MP_TAC AFFINE_HULL_3_INSERT); (NEW_GOAL `convex hull {EL 2 ul, mxi V ul} SUBSET affine hull {EL 2 ul, mxi V ul}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (NEW_GOAL `affine hull {EL 2 ul, mxi V ul} SUBSET affine hull {u1, v2, mxi V [u0; u1; v2; v3]}`); (MATCH_MP_TAC AFFINE_SUBSET_KY_LEMMA); (ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `2 = SUC 1 /\ 1 = SUC 0`]); (SET_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `u0 IN convex hull {EL 2 ul, mxi V ul}` THEN SET_TAC[]); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (MATCH_MP_TAC (REAL_ARITH `(a <= b) /\ ~(a = b) ==> a < b`)); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ; NORM_CAUCHY_SCHWARZ_EQ]); (NEW_GOAL `xx IN convex hull {(EL 2 ul) ,(mxi V ul)}`); (MATCH_MP_TAC SMALLEST_ANGLE_IN_CONVEX_HULL); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v1 v2 v3. ul = [u0; v1; v2; v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (ul:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (ul:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[ASSUME `v0 = u0:real^3`]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `EL 2 ul = v2:real^3`); (ASM_REWRITE_TAC[EL;HD;TL; ARITH_RULE `2 = SUC 1 /\ 1 = SUC 0`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 3 V ul INTER C)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 3 V ul` THEN STRIP_TAC); (REWRITE_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; ASSUME `ul = [u0; v1; v2; v3:real^3]`; SET_RULE `{a,b,c} UNION {d} = {a,b, c,d}`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, v1, v2, mxi V ul}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {v2, mxi V ul}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `mxi V ul`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 3 V ul INTER C)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 3 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (REWRITE_TAC[MCELL_EXPLICIT; mcell3]); (COND_CASES_TAC); (NEW_GOAL `?v2 v3. ul = [u0;u1;v2;v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, mxi V ul}`); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (ABBREV_TAC `m = mxi V ul`); (NEW_GOAL `mxi V [u0; u1;v2;v3] = m`); (EXPAND_TAC "m" THEN AP_TERM_TAC THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ABBREV_TAC `k1 = norm (xx - u0:real^3)`); (ABBREV_TAC `k2 = norm (u1 - u0:real^3)`); (UNDISCH_TAC `xx IN convex hull {EL 2 ul, m:real^3}`); (ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `2 = SUC 1/\ 1 = SUC 0`; CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (UNDISCH_TAC `k1 % (u1 - u0) = k2 % (xx - u0:real^3)`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (REWRITE_TAC[coplanar]); (NEW_GOAL `~(k2 = &0)`); (EXPAND_TAC "k2"); (REWRITE_TAC[NORM_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> b = a`]); (ASM_REWRITE_TAC[]); (ASM_CASES_TAC `~(v = &0)`); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `v2:real^3`); (MATCH_MP_TAC (SET_RULE `{a,b,c} SUBSET X /\ d IN X ==> {a,b,c,d} SUBSET X`)); (STRIP_TAC); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(k2 - k1:real) / (k2 * v)`); (EXISTS_TAC `k1 / (k2 * v)`); (EXISTS_TAC `(--k2 * u) / (k2 * v)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (REWRITE_WITH `k2 - k1 + k1 + --k2 * u = k2 * (u + v) - k1 + k1 + --k2 * u`); (ASM_REWRITE_TAC[ARITH_RULE `SUC 0 = 1`] THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `k2 * (u + v) - k1 + k1 + --k2 * u = k2 * v`]); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ARITH `a / x % u0 + b / x % u1 + d / x % u2 = (&1 / x) % (a % u0 + b % u1 + d % u2)`]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `&1 / (k2 * v) % ((k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2) = m:real^3 <=> ((k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2) = (k2 * v) % m`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[VECTOR_ARITH `(k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2 = (k2 * v) % m <=> k1 % (u1 - u0) = k2 % ((u % v2 + v % m) - u0)`]); (NEW_GOAL `~(u = &0)`); (UP_ASM_TAC THEN UNDISCH_TAC `u + v = &(SUC 0):real` THEN REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REAL_ARITH_TAC); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `m:real^3`); (MATCH_MP_TAC (SET_RULE `{a,b,c} SUBSET X /\ d IN X ==> {a,b,d,c} SUBSET X`)); (STRIP_TAC); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(k2 - k1:real) / (k2 * u)`); (EXISTS_TAC `k1 / (k2 * u)`); (EXISTS_TAC `(--k2 * v) / (k2 * u)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (REWRITE_WITH `k2 - k1 + k1 + --k2 * v = k2 * (u + v) - k1 + k1 + --k2 * v`); (ASM_REWRITE_TAC[ARITH_RULE `SUC 0 = 1`] THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `k2 * (u + v) - k1 + k1 + --k2 * v = k2 * u`]); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ARITH `a / x % u0 + b / x % u1 + d / x % u2 = (&1 / x) % (a % u0 + b % u1 + d % u2)`]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `&1 / (k2 * u) % ((k2 - k1) % u0 + k1 % u1 + (--k2 * v) % m) = v2:real^3 <=> ((k2 - k1) % u0 + k1 % u1 + (--k2 * v) % m) = (k2 * u) % v2`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[VECTOR_ARITH `(k2 - k1) % u0 + k1 % u1 + (--k2 * v) % m = (k2 * u) % v2 <=> k1 % (u1 - u0) = k2 % ((u % v2 + v % m) - u0)`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (* ========================================================================== *) (ABBREV_TAC `f4 = (\ul. (((smallest_angle_line (EL 2 ul) (EL 3 ul) u0 u1) - u0) dot (u1 - u0)) / (norm ((smallest_angle_line (EL 2 ul) (EL 3 ul) u0 u1) - u0) * norm (u1 - u0)))`); (ABBREV_TAC `P4 = {(f4:(real^3)list->real) ul |ul | barV V 3 ul /\ ~NULLSET (mcell 4 V ul INTER C) /\ truncate_simplex 1 ul = [u0; u1]}`); (NEW_GOAL `~(P4 = {}) ==> (?b:real. b IN P4 /\ (!x. x IN P4 ==> x <= b))`); (STRIP_TAC); (MATCH_MP_TAC SUP_FINITE_LEMMA); (ASM_REWRITE_TAC[]); (EXPAND_TAC "P4"); (ONCE_REWRITE_TAC [SET_RULE `{f x| x | P x} = {f x | x IN {y | P y}}`]); (ONCE_REWRITE_TAC [SET_RULE `{f x| x IN s} = {y | ?x. x IN s /\ y = f x}`]); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{y | ?v0:real^3 v1 u2 u3. v0 IN (V INTER ball (u0:real^3, &4)) /\ v1 IN (V INTER ball (u0, &4)) /\ u2 IN (V INTER ball (u0, &4)) /\ u3 IN (V INTER ball (u0, &4)) /\ y = [v0; v1; u2; u3]}`); (STRIP_TAC); (MATCH_MP_TAC FINITE_SET_LIST_LEMMA); (ASM_SIMP_TAC[FINITE_PACK_LEMMA]); (REWRITE_TAC[SUBSET] THEN ONCE_REWRITE_TAC[IN] THEN REWRITE_TAC[IN_ELIM_THM]); (REPEAT STRIP_TAC); (NEW_GOAL `?v0 v1 u2 u3. x = [v0; v1; u2; u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v0:real^3` THEN EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (x:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (x:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `set_of_list x SUBSET ball (u0:real^3,&4)`); (MATCH_MP_TAC Qzyzmjc.BARV_3_IMP_FINITE_lemma2); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (NEW_GOAL `set_of_list x SUBSET V:real^3->bool`); (MATCH_MP_TAC Packing3.BARV_SUBSET); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN ASM_REWRITE_TAC[set_of_list]); (SET_TAC[]); (ABBREV_TAC `d2 = (if (P4 = {}:real->bool) then c else (@b. b IN P4 /\ (!x. x IN P4 ==> x <= b)))`); (NEW_GOAL `d2 < &1`); (EXPAND_TAC "d2"); (COND_CASES_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `?b:real. b IN P4 /\ (!x. x IN P4 ==> x <= b)`); (ASM_SIMP_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `P = (\b:real. b IN P4 /\ (!x. x IN P4 ==> x <= b))`); (ABBREV_TAC `zz = (@) (P:real->bool)`); (NEW_GOAL `(P:real->bool) zz`); (EXPAND_TAC "zz"); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b':real`); (EXPAND_TAC "P" THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "P" THEN REWRITE_TAC[]); (EXPAND_TAC "P4" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f4"); (ABBREV_TAC `xx = smallest_angle_line (EL 2 ul) (EL 3 ul) u0 u1`); (MATCH_MP_TAC REAL_DIV_LT_1_TACTICS); (STRIP_TAC); (MATCH_MP_TAC (REAL_ARITH `&0 <= a /\ ~(a = &0) ==> &0 < a`)); (STRIP_TAC); (SIMP_TAC[REAL_LE_MUL; NORM_POS_LE]); (REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> a = b`]); (ASM_REWRITE_TAC[]); (EXPAND_TAC "xx"); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN REWRITE_TAC[smallest_angle_line; smallest_angle_set]); (STRIP_TAC); (ABBREV_TAC `Q = (\x:real^3. x IN convex hull {EL 2 ul, EL 3 ul} /\ (!y. y IN convex hull {EL 2 ul, EL 3 ul} ==> ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)) <= ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0))))`); (NEW_GOAL `(Q:real^3->bool) u0`); (ONCE_ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXPAND_TAC "Q"); (MATCH_MP_TAC SMALLEST_ANGLE_LINE_EXISTS); (STRIP_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v1 v2 v3. ul = [u0; v1; v2; v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (ul:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (ul:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[ASSUME `v0 = u0:real^3`]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `EL 2 ul = v2:real^3 /\ EL 3 ul = v3`); (ASM_REWRITE_TAC[EL;HD;TL; ARITH_RULE `3 = SUC 2 /\2 = SUC 1 /\ 1 = SUC 0`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 4 V ul INTER C)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 4 V ul` THEN STRIP_TAC); (SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list;ARITH_RULE `4 >= 4`; ASSUME `ul = [u0; v1; v2; v3:real^3]`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, v1, v2, v3:real^3}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q"); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 4 V ul INTER C)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 4 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (SIMP_TAC[MCELL_EXPLICIT; mcell4; ARITH_RULE `4 >= 4`]); (COND_CASES_TAC); (NEW_GOAL `?v2 v3. ul = [u0;u1;v2;v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list]); (REWRITE_TAC[GSYM (ASSUME `u0 = (@) (Q:real^3->bool)`)]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_WITH `affine hull {u0, u1, v2, v3} = affine hull {u1, v2, v3:real^3}`); (MATCH_MP_TAC AFFINE_HULL_3_INSERT); (NEW_GOAL `convex hull {EL 2 ul, (EL 3 ul):real^3} SUBSET affine hull {EL 2 ul, EL 3 ul}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (NEW_GOAL `affine hull {EL 2 ul, (EL 3 ul):real^3} SUBSET affine hull {u1, v2, v3}`); (MATCH_MP_TAC AFFINE_SUBSET_KY_LEMMA); (ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (SET_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `u0 IN convex hull {EL 2 ul, (EL 3 ul):real^3}` THEN SET_TAC[]); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (MATCH_MP_TAC (REAL_ARITH `(a <= b) /\ ~(a = b) ==> a < b`)); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ; NORM_CAUCHY_SCHWARZ_EQ]); (NEW_GOAL `xx IN convex hull {(EL 2 ul) ,(EL 3 ul):real^3}`); (MATCH_MP_TAC SMALLEST_ANGLE_IN_CONVEX_HULL); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3`); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v1 v2 v3. ul = [u0; v1; v2; v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (NEW_GOAL `v0 = u0:real^3`); (REWRITE_WITH `v0 = HD (ul:(real^3)list)`); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `u0 = HD (truncate_simplex 1 (ul:(real^3)list))`); (ASM_REWRITE_TAC[HD]); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[ASSUME `v0 = u0:real^3`]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `EL 2 ul = v2:real^3 /\ EL 3 ul = v3`); (ASM_REWRITE_TAC[EL;HD;TL; ARITH_RULE `3 = SUC 2 /\2 = SUC 1 /\ 1 = SUC 0`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 4 V ul INTER C)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 4 V ul` THEN STRIP_TAC); (SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list;ARITH_RULE `4 >= 4`; ASSUME `ul = [u0; v1; v2; v3:real^3]`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, v1, v2, v3:real^3}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `v1:real^3` THEN EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (mcell 4 V ul INTER C)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `mcell 4 V ul`); (REWRITE_TAC[SET_RULE `A INTER B SUBSET A`]); (SIMP_TAC[MCELL_EXPLICIT; mcell4; ARITH_RULE `4 >= 4`]); (COND_CASES_TAC); (NEW_GOAL `?v2 v3. ul = [u0;u1;v2;v3:real^3]`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v2:real^3` THEN EXISTS_TAC `v3:real^3`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `v0 = u0:real^3`); (NEW_GOAL `HD (truncate_simplex 1 ul) = u0:real^3`); (ASM_REWRITE_TAC[HD]); (NEW_GOAL `HD (truncate_simplex 1 ul) = v0:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `v1 = u1:real^3`); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 ul)) = v1:real^3`); (REWRITE_TAC[ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, v2, v3:real^3}`); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ABBREV_TAC `k1 = norm (xx - u0:real^3)`); (ABBREV_TAC `k2 = norm (u1 - u0:real^3)`); (UNDISCH_TAC `xx IN convex hull {EL 2 ul,(EL 3 ul):real^3}`); (ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1/\ 1 = SUC 0`; CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (UNDISCH_TAC `k1 % (u1 - u0) = k2 % (xx - u0:real^3)`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (REWRITE_TAC[coplanar]); (NEW_GOAL `~(k2 = &0)`); (EXPAND_TAC "k2"); (REWRITE_TAC[NORM_EQ_0; VECTOR_ARITH `a - b = vec 0 <=> b = a`]); (ASM_REWRITE_TAC[]); (ASM_CASES_TAC `~(v = &0)`); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `v2:real^3`); (MATCH_MP_TAC (SET_RULE `{a,b,c} SUBSET X /\ d IN X ==> {a,b,c,d} SUBSET X`)); (STRIP_TAC); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(k2 - k1:real) / (k2 * v)`); (EXISTS_TAC `k1 / (k2 * v)`); (EXISTS_TAC `(--k2 * u) / (k2 * v)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (REWRITE_WITH `k2 - k1 + k1 + --k2 * u = k2 * (u + v) - k1 + k1 + --k2 * u`); (ASM_REWRITE_TAC[ARITH_RULE `SUC 0 = 1`] THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `k2 * (u + v) - k1 + k1 + --k2 * u = k2 * v`]); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ARITH `a / x % u0 + b / x % u1 + d / x % u2 = (&1 / x) % (a % u0 + b % u1 + d % u2)`]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `&1 / (k2 * v) % ((k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2) = v3:real^3 <=> ((k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2) = (k2 * v) % v3`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[VECTOR_ARITH `(k2 - k1) % u0 + k1 % u1 + (--k2 * u) % v2 = (k2 * v) % v3 <=> k1 % (u1 - u0) = k2 % ((u % v2 + v % v3) - u0)`]); (NEW_GOAL `~(u = &0)`); (UP_ASM_TAC THEN UNDISCH_TAC `u + v = &(SUC 0):real` THEN REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REAL_ARITH_TAC); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `v3:real^3`); (MATCH_MP_TAC (SET_RULE `{a,b,c} SUBSET X /\ d IN X ==> {a,b,d,c} SUBSET X`)); (STRIP_TAC); (REWRITE_TAC[Qzksykg.SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(k2 - k1:real) / (k2 * u)`); (EXISTS_TAC `k1 / (k2 * u)`); (EXISTS_TAC `(--k2 * v) / (k2 * u)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (REWRITE_WITH `k2 - k1 + k1 + --k2 * v = k2 * (u + v) - k1 + k1 + --k2 * v`); (ASM_REWRITE_TAC[ARITH_RULE `SUC 0 = 1`] THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `k2 * (u + v) - k1 + k1 + --k2 * v = k2 * u`]); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_ARITH `a / x % u0 + b / x % u1 + d / x % u2 = (&1 / x) % (a % u0 + b % u1 + d % u2)`]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_WITH `&1 / (k2 * u) % ((k2 - k1) % u0 + k1 % u1 + (--k2 * v) % v3) = v2:real^3 <=> ((k2 - k1) % u0 + k1 % u1 + (--k2 * v) % v3) = (k2 * u) % v2`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (REWRITE_TAC[REAL_ENTIRE] THEN ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[VECTOR_ARITH `(k2 - k1) % u0 + k1 % u1 + (--k2 * v) % m = (k2 * u) % v2 <=> k1 % (u1 - u0) = k2 % ((u % v2 + v % m) - u0)`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (* ========================================================================== *) (ABBREV_TAC `d = max c (max d1 d2)`); (NEW_GOAL `d < &1`); (UNDISCH_TAC `d2 < &1` THEN UNDISCH_TAC `d1 < &1` THEN UNDISCH_TAC `&0 < c /\ c < &1`); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (* ========================================================================== *) (ABBREV_TAC `D = ball (u0:real^3,r) INTER rcone_gt u0 u1 d`); (NEW_GOAL `D SUBSET C:real^3->bool`); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (NEW_GOAL `!X. mcell_set V X /\ ~NULLSET (X INTER D) ==> (?k vl. 2 <= k /\ barV V 3 vl /\ X = mcell k V vl /\ truncate_simplex 1 vl = [u0; u1])`); (REPEAT STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[] THEN MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER C:real^3->bool`); (ASM_REWRITE_TAC[] THEN UNDISCH_TAC `D SUBSET C:real^3->bool`); (SET_TAC[]); (* ========================================================================= *) (NEW_GOAL `D = conic_cap (u0:real^3) u1 r d`); (EXPAND_TAC "D" THEN REWRITE_TAC[conic_cap; NORMBALL_BALL]); (NEW_GOAL `!X. mcell_set V X /\ ~NULLSET (X INTER D) ==> vol (X INTER D) = vol (D) * (dihX V X (u0,u1)) / (&2 * pi)`); (REPEAT STRIP_TAC); (NEW_GOAL `?k vl. 2 <= k /\ barV V 3 vl /\ X = mcell k V vl /\ truncate_simplex 1 vl = [u0; u1]`); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN REPEAT STRIP_TAC); (* ========================================================================= *) (* Case k = 2 *) (* ========================================================================= *) (ASM_CASES_TAC `k = 2`); (ABBREV_TAC `m = mxi V vl`); (ABBREV_TAC `s3 = omega_list_n V vl 3`); (ABBREV_TAC `L = aff_ge{u0, u1} {m, s3:real^3}`); (REWRITE_WITH `vol (X INTER D) = vol (L INTER D)`); (AP_TERM_TAC); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2]); (LET_TAC); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. vl = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `HD vl = u0 /\ HD (TL vl) = u1:real^3`); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = v1:real^3`); (REWRITE_TAC[ASSUME `vl = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (EXPAND_TAC "L"); (REWRITE_TAC [SET_RULE `(A INTER B INTER C) INTER D = C INTER D <=> (!x. x IN C INTER D ==> x IN A /\ x IN B)`]); (REPEAT GEN_TAC THEN STRIP_TAC); (NEW_GOAL `x:real^3 IN D`); (UP_ASM_TAC THEN UNDISCH_TAC `D = conic_cap (u0:real^3) u1 r d`); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "D" THEN STRIP_TAC); (NEW_GOAL `x:real^3 IN rcone_gt u0 u1 a'`); (NEW_GOAL `rcone_gt (u0:real^3) u1 d SUBSET rcone_gt u0 u1 c`); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `rcone_gt (u0:real^3) u1 c SUBSET W INTER rcone_gt u0 u1 a'`); (SET_TAC[]); (STRIP_TAC); (UP_ASM_TAC THEN SET_TAC[RCONE_GT_SUBSET_RCONE_GE]); (* ========================================================================== *) (UP_ASM_TAC THEN REWRITE_TAC[rcone_ge; rconesgn; rcone_gt; IN; IN_ELIM_THM]); (STRIP_TAC); (ABBREV_TAC `y = u0 + proj_point (u1 - u0:real^3) (x - u0)`); (NEW_GOAL `orthogonal (x - y) (u1 - u0:real^3)`); (REWRITE_WITH `x - y = (x - u0) - proj_point (u1 - u0) (x - u0:real^3)`); (EXPAND_TAC "y" THEN VECTOR_ARITH_TAC); (REWRITE_TAC[GSYM Marchal_cells_2_new.projection_proj_point]); (REWRITE_TAC[orthogonal; Packing3.PROJECTION_ORTHOGONAL]); (NEW_GOAL `norm (x - u0) pow 2 = norm (y - u0) pow 2 + norm (x - y:real^3) pow 2`); (MATCH_MP_TAC PYTHAGORAS); (REWRITE_TAC[orthogonal]); (ONCE_REWRITE_TAC[VECTOR_ARITH `(a - b) dot c = --(c dot (b - a))`]); (REWRITE_WITH `y - u0 = proj_point (u1 - u0) (x - u0:real^3)`); (EXPAND_TAC "y" THEN REWRITE_TAC[VECTOR_ARITH `(a + b) - a:real^3 = b`]); (REWRITE_TAC[PRO_EXP; DOT_RMUL]); (UP_ASM_TAC THEN REWRITE_TAC[orthogonal] THEN STRIP_TAC); (ASM_REWRITE_TAC[]); (REAL_ARITH_TAC); (NEW_GOAL `norm (x - u1) pow 2 = norm (y - u1) pow 2 + norm (x - y:real^3) pow 2`); (MATCH_MP_TAC PYTHAGORAS); (REWRITE_TAC[orthogonal]); (ONCE_REWRITE_TAC[VECTOR_ARITH `(a - b) dot c = c dot (a - b)`]); (REWRITE_WITH `u1 - y = (u1 - u0) - proj_point (u1 - u0) (x - u0:real^3)`); (EXPAND_TAC "y" THEN VECTOR_ARITH_TAC); (REWRITE_TAC[PRO_EXP; VECTOR_ARITH `x - a % x = (&1 - a) % x`]); (REWRITE_TAC[DOT_RMUL] THEN DEL_TAC); (UP_ASM_TAC THEN REWRITE_TAC[orthogonal] THEN STRIP_TAC); (ASM_REWRITE_TAC[]); (REAL_ARITH_TAC); (MP_TAC (ASSUME `(x - u0:real^3) dot (u1 - u0) > dist (x,u0) * dist (u1,u0) * a'`)); (REWRITE_WITH `(x - u0) dot (u1 - u0) = (x - y) dot (u1 - u0) + (y - u0) dot (u1 - u0:real^3)`); (VECTOR_ARITH_TAC); (REWRITE_WITH `(x - u1) dot (u0 - u1) = (x - y) dot (u0 - u1) + (y - u1) dot (u0 - u1:real^3)`); (VECTOR_ARITH_TAC); (REWRITE_WITH `(x - y) dot (u1 - u0:real^3) = &0`); (ASM_REWRITE_TAC[GSYM orthogonal]); (REWRITE_WITH `(x - y) dot (u0 - u1:real^3) = &0`); (ONCE_REWRITE_TAC[VECTOR_ARITH `a dot (u0 - u1) = --(a dot (u1 - u0))`]); (REWRITE_TAC[REAL_ARITH `--a = &0 <=> a = &0`]); (ASM_REWRITE_TAC[GSYM orthogonal]); (REWRITE_TAC[REAL_ARITH `&0 + a = a`]); (STRIP_TAC); (NEW_GOAL `(y - u0) dot (u1 - u0) = norm (y - u0) * norm (u1 - u0:real^3)`); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ_EQ]); (REWRITE_WITH `y - u0 = proj_point (u1 - u0) (x - u0:real^3)`); (EXPAND_TAC "y" THEN REWRITE_TAC[VECTOR_ARITH `(a + b) - a:real^3 = b`]); (REWRITE_TAC[PRO_EXP; NORM_MUL; VECTOR_MUL_ASSOC]); (MATCH_MP_TAC (MESON[] `a = b ==> a % x = b % x`)); (REWRITE_TAC[REAL_ARITH `a * norm b = norm b * a`]); (MATCH_MP_TAC (MESON[] `a = b ==> x * a = x * b`)); (REWRITE_TAC[REAL_ABS_REFL]); (MATCH_MP_TAC REAL_LE_DIV); (REWRITE_TAC[DOT_POS_LE]); (REWRITE_WITH `(x - u0) dot (u1 - u0) = (x - y) dot (u1 - u0) + (y - u0) dot (u1 - u0:real^3)`); (VECTOR_ARITH_TAC); (REWRITE_WITH `(x - y) dot (u1 - u0:real^3) = &0`); (ASM_REWRITE_TAC[GSYM orthogonal]); (REWRITE_TAC[REAL_ARITH `&0 + a = a`]); (NEW_GOAL `y IN convex hull {u0, u1:real^3}`); (NEW_GOAL `y IN affine hull {u0, u1:real^3}`); (REWRITE_TAC[AFFINE_HULL_2; IN; IN_ELIM_THM]); (EXPAND_TAC "y" THEN REWRITE_TAC[PRO_EXP]); (ABBREV_TAC `rtemp = ((x - u0) dot (u1 - u0)) / ((u1 - u0) dot (u1 - u0:real^3))`); (EXISTS_TAC `&1 - rtemp` THEN EXISTS_TAC `rtemp:real`); (STRIP_TAC); (REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (UP_ASM_TAC THEN REWRITE_TAC[IN; AFFINE_HULL_2; CONVEX_HULL_2; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (ASM_REWRITE_TAC[]); (NEW_GOAL `y - u0 = v % (u1 - u0:real^3)`); (NEW_GOAL `y - u0 = y - (u + v) % u0:real^3`); (REWRITE_TAC[ASSUME `u + v = &1`; VECTOR_MUL_LID]); (UP_ASM_TAC THEN REWRITE_WITH `y - (u + v) % u0 = v % (u1 - u0:real^3)`); (REWRITE_TAC[ASSUME `y = u % u0 + v % u1:real^3`] THEN VECTOR_ARITH_TAC); (ASM_CASES_TAC `u < &0`); (NEW_GOAL `F`); (NEW_GOAL `norm (y - u0) <= norm (x - u0:real^3)`); (MATCH_MP_TAC Tactics_jordan.REAL_POW_2_LE); (REWRITE_TAC[NORM_POS_LE; ASSUME `norm (x - u0:real^3) pow 2 = norm (y - u0) pow 2 + norm (x - y) pow 2`; REAL_ARITH `a <= a + b <=> &0 <= b`; REAL_LE_POW_2]); (NEW_GOAL `norm (x - u0:real^3) < &1`); (REWRITE_TAC[GSYM dist] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM IN_BALL]); (NEW_GOAL `ball (u0:real^3, r) SUBSET ball (u0, &1)`); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `x IN ball (u0:real^3,r) INTER rcone_gt u0 u1 d` THEN SET_TAC[]); (NEW_GOAL `norm (y - u0) = v * norm (u1:real^3 - u0)`); (ASM_REWRITE_TAC[NORM_MUL]); (REWRITE_WITH `abs v = v`); (REWRITE_TAC[REAL_ABS_REFL]); (UNDISCH_TAC `u + v = &1` THEN UNDISCH_TAC `u < &0` THEN REAL_ARITH_TAC); (NEW_GOAL `&2 <= norm (u1 - u0:real^3)`); (REWRITE_TAC[GSYM dist]); (UNDISCH_TAC `packing (V:real^3->bool)` THEN REWRITE_TAC[packing]); (REPEAT STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (ONCE_REWRITE_TAC[MESON[IN] `V x <=> x IN (V:real^3->bool)`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `v * &2 <= v * norm (u1 - u0:real^3)`); (REWRITE_TAC[REAL_ARITH `a * b <= a * c <=> &0 <= a * (c - b)`]); (MATCH_MP_TAC REAL_LE_MUL); (UNDISCH_TAC `u + v = &1` THEN UNDISCH_TAC `u < &0` THEN UP_ASM_TAC); (REAL_ARITH_TAC); (NEW_GOAL `&1 < v`); (UNDISCH_TAC `u + v = &1` THEN UNDISCH_TAC `u < &0` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `v < &0`); (NEW_GOAL `F`); (NEW_GOAL `(y - u0) dot (u1 - u0:real^3) <= &0`); (ASM_REWRITE_TAC[DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= (--a) * b`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DOT_POS_LE]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `&0 <= dist (x,u0) * dist (u1,u0:real^3) * a'`); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (EXPAND_TAC "a'" THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (REWRITE_TAC[HL_2]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE] THEN REAL_ARITH_TAC); (MATCH_MP_TAC SQRT_POS_LE THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `(y - u0:real^3) dot (u1 - u0) > dist (x,u0) * dist (u1,u0) * a'`); (REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `&0 <= dist (x,u0) * dist (u1,u0:real^3) * a'`); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (EXPAND_TAC "a'" THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (REWRITE_TAC[HL_2]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE] THEN REAL_ARITH_TAC); (MATCH_MP_TAC SQRT_POS_LE THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `(y - u1) dot (u0 - u1) = norm (y - u1) * norm (u0 - u1:real^3)`); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ_EQ]); (REWRITE_WITH `y - u1 = proj_point (u1 - u0) (x - u0:real^3) - (u1 - u0)`); (EXPAND_TAC "y" THEN VECTOR_ARITH_TAC); (REWRITE_TAC[PRO_EXP; VECTOR_ARITH `x % a - a = (x - &1) % a`; NORM_MUL; VECTOR_MUL_ASSOC]); (REWRITE_WITH ` (norm (u0 - u1) * (((x - u0) dot (u1 - u0)) / ((u1 - u0) dot (u1 - u0)) - &1)) % (u1 - u0) = (norm (u0 - u1:real^3) * (&1 - ((x - u0) dot (u1 - u0)) / ((u1 - u0) dot (u1 - u0)))) % (u0 - u1)`); (VECTOR_ARITH_TAC); (MATCH_MP_TAC (MESON[] `a = b ==> a % x = b % x`)); (REWRITE_TAC[REAL_ARITH `a * norm b = norm b * a`]); (REWRITE_TAC[NORM_ARITH `norm (a - b) = norm (b - a)`]); (MATCH_MP_TAC (MESON[] `a = b ==> x * a = x * b`)); (REWRITE_TAC[REAL_ARITH `abs (x - &1) = abs (&1 - x)`]); (REWRITE_TAC[REAL_ABS_REFL; REAL_ARITH `&0 <= a - b <=> b <= a`]); (REWRITE_WITH `((x - u0) dot (u1 - u0)) / ((u1 - u0) dot (u1 - u0)) <= &1 <=> ((x - u0) dot (u1 - u0)) <= &1 * ((u1 - u0) dot (u1 - u0:real^3))`); (MATCH_MP_TAC REAL_LE_LDIV_EQ); (REWRITE_TAC[DOT_POS_LT; VECTOR_ARITH `a - b = vec 0 <=> b = a`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `(x - u0) dot (u1 - u0) <= norm (x - u0) * norm (u1 - u0:real^3)`); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ]); (NEW_GOAL `norm (x - u0) * norm (u1 - u0) <= &1 * norm (u1 - u0:real^3)`); (REWRITE_TAC[REAL_ARITH `a * x <= b * x <=> &0 <= (b - a) * x`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE; REAL_ARITH `&0 <= a - b <=> b <= a`; GSYM dist]); (MATCH_MP_TAC (REAL_ARITH `a < x ==> a <= x`)); (ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM IN_BALL]); (NEW_GOAL `ball (u0:real^3, r) SUBSET ball (u0, &1)`); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `x IN ball (u0:real^3,r) INTER rcone_gt u0 u1 d` THEN SET_TAC[]); (REWRITE_TAC[GSYM NORM_POW_2; REAL_ARITH `&1 * a pow 2 = a * a`]); (NEW_GOAL `&1 * norm (u1 - u0) <= norm (u1 - u0) * norm (u1 - u0:real^3)`); (REWRITE_TAC[REAL_ARITH `a * x <= b * x <=> &0 <= (b - a) * x`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE; REAL_ARITH `&0 <= a - b <=> b <= a`; GSYM dist]); (MATCH_MP_TAC (REAL_ARITH `&2 <= x ==> &1 <= x`)); (UNDISCH_TAC `packing (V:real^3->bool)` THEN REWRITE_TAC[packing]); (STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (ONCE_REWRITE_TAC[MESON[IN] `V x <=> x IN (V:real^3->bool)`]); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `(x - u0:real^3) dot (u1 - u0) <= norm (x - u0) * norm (u1 - u0)` THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[dist]); (REWRITE_TAC[REAL_ARITH `a * b >= x * b * c <=> &0 <= b * (a - x * c)`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE; REAL_ARITH `&0 <= a - b <=> b <= a`]); (MATCH_MP_TAC Tactics_jordan.REAL_POW_2_LE); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE]); (EXPAND_TAC "a'" THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (REWRITE_TAC[HL_2]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE] THEN REAL_ARITH_TAC); (MATCH_MP_TAC SQRT_POS_LE THEN REAL_ARITH_TAC); (REWRITE_TAC[NORM_POS_LE; REAL_ARITH `(a * b) pow 2 = a pow 2 * b pow 2`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[REAL_ARITH `(a + b) * x <= a <=> b * x <= (&1 - x) * a`]); (UNDISCH_TAC `(y - u0) dot (u1 - u0) > dist (x,u0) * dist (u1,u0:real^3) * a'`); (ASM_REWRITE_TAC[dist]); (REWRITE_TAC[REAL_ARITH `a * b > x * b * c <=> &0 < b * (a - x * c)`]); (REWRITE_TAC[REAL_MUL_POS_LT]); (REWRITE_WITH `~(norm (u1 - u0:real^3) < &0 /\ norm (y - u0) - norm (x - u0) * a' < &0)`); (NEW_GOAL `&0 <= norm (u1 - u0:real^3)`); (REWRITE_TAC[NORM_POS_LE]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&0 < a - b <=> b < a`]); (REWRITE_WITH `norm (x - u0) * a' < norm (y - u0:real^3) <=> (norm (x - u0) * a') pow 2 < norm (y - u0) pow 2`); (MATCH_MP_TAC Pack1.bp_bdt); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE]); (EXPAND_TAC "a'" THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (REWRITE_TAC[HL_2]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE] THEN REAL_ARITH_TAC); (MATCH_MP_TAC SQRT_POS_LE THEN REAL_ARITH_TAC); (REWRITE_TAC[NORM_POS_LE]); (ASM_REWRITE_TAC[REAL_ARITH `(a * b) pow 2 = a pow 2 * b pow 2`]); (REWRITE_TAC[REAL_ARITH `(a + b) * x < a <=> b * x < (&1 - x) * a`]); (STRIP_TAC); (NEW_GOAL `(&1 - a' pow 2) * norm (y - u0) pow 2 <= (&1 - a' pow 2) * norm (y - u1:real^3) pow 2`); (REWRITE_TAC[REAL_ARITH `a * x <= a * y <=> &0 <= a * (y - x)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= &1 - b <=> b <= &1 pow 2`]); (REWRITE_WITH `a' pow 2 <= &1 pow 2 <=> a' <= &1`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.POW2_COND); (REWRITE_TAC[REAL_ARITH `&0 <= &1`]); (EXPAND_TAC "a'" THEN MATCH_MP_TAC REAL_LE_DIV); (STRIP_TAC); (REWRITE_TAC[HL_2]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE] THEN REAL_ARITH_TAC); (MATCH_MP_TAC SQRT_POS_LE THEN REAL_ARITH_TAC); (EXPAND_TAC "a'"); (MATCH_MP_TAC REAL_DIV_LE_1_TACTICS); (ASM_SIMP_TAC[SQRT_POS_LT; REAL_ARITH `&0 < &2`]); (UNDISCH_TAC `hl [u0; u1:real^3] < sqrt (&2)` THEN REAL_ARITH_TAC); (NEW_GOAL `norm (x - u0) pow 2 <= norm (x - u1:real^3) pow 2`); (REWRITE_WITH `norm (x - u0) pow 2 <= norm (x - u1:real^3) pow 2 <=> norm (x - u0) <= norm (x - u1:real^3)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.POW2_COND); (REWRITE_TAC[NORM_POS_LE]); (MATCH_MP_TAC (REAL_ARITH `&2 * x <= x + y ==> x <= y`)); (REWRITE_TAC[GSYM dist]); (NEW_GOAL `dist (x, u0:real^3) < &1`); (ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM IN_BALL]); (NEW_GOAL `ball (u0:real^3, r) SUBSET ball (u0, &1)`); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `x IN ball (u0:real^3,r) INTER rcone_gt u0 u1 d` THEN SET_TAC[]); (NEW_GOAL `&2 * dist (x, u0:real^3) < &2`); (UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `&2 <= dist (x, u0) + dist (x, u1:real^3)`); (NEW_GOAL `&2 <= dist (u0, u1:real^3)`); (UNDISCH_TAC `packing (V:real^3->bool)` THEN REWRITE_TAC[packing]); (STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (ONCE_REWRITE_TAC[MESON[IN] `V a <=> a:real^3 IN V`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `dist (u0, u1:real^3) <= dist (u0, x) + dist (x, u1)`); (REWRITE_TAC[DIST_TRIANGLE]); (UP_ASM_TAC THEN REWRITE_TAC[DIST_SYM]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER C:real^3->bool`); (ASM_SIMP_TAC [SET_RULE `A SUBSET B ==> X INTER A SUBSET X INTER B`]); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2; SET_RULE `{} INTER s = {}`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (NEW_GOAL `~coplanar {u0, u1:real^3, m, s3}`); (ONCE_REWRITE_TAC[GSYM COPLANAR_AFFINE_HULL_COPLANAR]); (STRIP_TAC); (NEW_GOAL `NULLSET X`); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, m, s3:real^3}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2]); (COND_CASES_TAC); (LET_TAC); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> M INTER N INTER A SUBSET B`)); (NEW_GOAL `?v0 v1 v2 v3. vl = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_WITH `HD vl = u0 /\ HD (TL vl) = u1:real^3`); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = u1:real^3`); (ASM_REWRITE_TAC[HD; TL]); (NEW_GOAL `HD (TL(truncate_simplex 1 vl)) = v1:real^3`); (REWRITE_TAC[ASSUME `vl = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `{u0, u1, m, s3} = {u0, u1} UNION {m:real^3, s3}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (SET_TAC[]); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[] THEN MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (* ========================================================================= *) (ASM_CASES_TAC `azim u0 u1 m (s3:real^3) < pi`); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 m s3)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {m, s3} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_WITH `aff_ge {u0, u1:real^3} {m, s3} = aff_gt {u0, u1} {m, s3} UNION UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (REWRITE_WITH `{u0, u1, m, s3} = {u0, u1, s3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `s3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (REWRITE_WITH `{u0, u1, m, s3} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({m, s3} DELETE a) | a | a IN {m, s3}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {m} UNION aff_ge {u0, u1:real^3} {s3}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, m}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,m:real^3} = {u0,u1} UNION {m}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, s3}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,s3:real^3} = {u0,u1} UNION {s3}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (REWRITE_WITH `{u0, u1, m, s3} = {u0, u1, s3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `s3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (REWRITE_WITH `{u0, u1, m, s3} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 m s3) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 m s3 / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, m} /\ ~collinear {u0, u1, s3}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `s3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 m s3 = dihV u0 u1 m s3`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `s3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(2, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `2 <= 4`] THEN ASM_REWRITE_TAC[]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] vl /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v0 v1 v2 v3. vl = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 2 /\ mcell k' V ul = mcell 2 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell k' V ul INTER mcell 2 V vl = X`); (SET_TAC[ASSUME `X = mcell k' V ul`; ASSUME `X = mcell k V vl`; ASSUME `k = 2`]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `~NULLSET X` THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu2]); (REWRITE_WITH `omega_list_n V ul 3 = s3`); (EXPAND_TAC "s3"); (NEW_GOAL `2 = 2 /\ (!k. 2 - 1 <= k /\ k <= 3 ==> omega_list_n V ul k = omega_list_n V vl k)`); (MATCH_MP_TAC MCELL_ID_OMEGA_LIST_N); (ASM_REWRITE_TAC[SET_RULE `2 IN {2,3,4}`]); (REWRITE_TAC[GSYM (ASSUME `X = mcell k' V ul`); GSYM (ASSUME `k' = 2`)]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ARITH_TAC); (REWRITE_WITH `mxi V ul = m`); (EXPAND_TAC "m"); (MATCH_MP_TAC MCELL_ID_MXI); (EXISTS_TAC `2` THEN EXISTS_TAC `2`); (ASM_REWRITE_TAC[SET_RULE `2 IN {2,3}`]); (STRIP_TAC); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `(HD ul):real^3 = HD (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (REWRITE_WITH `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[HD]); (REWRITE_TAC[GSYM (ASSUME `X = mcell k' V ul`); GSYM (ASSUME `k' = 2`)]); (ASM_REWRITE_TAC[]); (NEW_GOAL `initial_sublist [u0; u1:real^3] ul /\ LENGTH [u0; u1] = 1 + 1`); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (REWRITE_WITH `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[EL; HD; ARITH_RULE `1 = SUC 0`; TL]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN MESON_TAC[]); (UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d /\ --(&1) < &0 ==> max d (--(&1)) = d`)); (REWRITE_TAC[REAL_NEG_LT0]); (STRIP_TAC); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (* OK here *) (ASM_CASES_TAC `azim u0 u1 s3 (m:real^3) < pi`); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (STRIP_TAC); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 s3 m)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {s3, m} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (REWRITE_WITH `aff_ge {u0, u1:real^3} {m, s3} = aff_gt {u0, u1} {m, s3} UNION UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, s3, m:real^3}`); (REWRITE_WITH `{u0, u1, s3, m} = {u0, u1, s3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `s3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, s3, m:real^3}`); (REWRITE_WITH `{u0, u1, s3, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({m, s3} DELETE a) | a | a IN {m, s3}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {m} UNION aff_ge {u0, u1:real^3} {s3}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, m}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,m:real^3} = {u0,u1} UNION {m}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, s3}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,s3:real^3} = {u0,u1} UNION {s3}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, s3, m:real^3}`); (REWRITE_WITH `{u0, u1, s3, m} = {u0, u1, s3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `s3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, s3, m:real^3}`); (REWRITE_WITH `{u0, u1, s3, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 s3 m) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 s3 m / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, m} /\ ~collinear {u0, u1, s3}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `s3:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 s3 m = dihV u0 u1 s3 m`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `s3:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(2, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `2 <= 4`] THEN ASM_REWRITE_TAC[]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] vl /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[]); (NEW_GOAL `?v0 v1 v2 v3. vl = [v0;v1;v2;v3:real^3]`); (MATCH_MP_TAC Marchal_cells.BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 2 /\ mcell k' V ul = mcell 2 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell k' V ul INTER mcell 2 V vl = X`); (REWRITE_TAC[ASSUME `X = mcell k V vl`; GSYM (ASSUME `X = mcell k' V ul`); ASSUME `k = 2`]); (SET_TAC[]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UNDISCH_TAC `~NULLSET X` THEN UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu2]); (REWRITE_WITH `omega_list_n V ul 3 = s3`); (EXPAND_TAC "s3"); (NEW_GOAL `2 = 2 /\ (!k. 2 - 1 <= k /\ k <= 3 ==> omega_list_n V ul k = omega_list_n V vl k)`); (MATCH_MP_TAC MCELL_ID_OMEGA_LIST_N); (ASM_REWRITE_TAC[SET_RULE `2 IN {2,3,4}`]); (STRIP_TAC); (MESON_TAC[ASSUME `X = mcell k V vl`; ASSUME `X = mcell k' V ul`; ASSUME `k = 2`; ASSUME `k' = 2`]); (REWRITE_WITH `mcell 2 V ul = X`); (MESON_TAC[ASSUME `X = mcell k' V ul`; ASSUME `k' = 2`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ARITH_TAC); (REWRITE_WITH `mxi V ul = m`); (EXPAND_TAC "m"); (MATCH_MP_TAC MCELL_ID_MXI); (EXISTS_TAC `2` THEN EXISTS_TAC `2`); (ASM_REWRITE_TAC[SET_RULE `2 IN {2,3}`]); (STRIP_TAC); (REWRITE_WITH `(HD vl):real^3 = HD (truncate_simplex 1 vl)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (vl:(real^3)list) = 3 + 1 /\ CARD (set_of_list vl) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `(HD ul):real^3 = HD (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (REWRITE_WITH `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (REWRITE_TAC[HD]); (STRIP_TAC); (MESON_TAC[ASSUME `X = mcell k V vl`; ASSUME `X = mcell k' V ul`; ASSUME `k = 2`; ASSUME `k' = 2`]); (REWRITE_WITH `mcell 2 V ul = X`); (MESON_TAC[ASSUME `X = mcell k' V ul`; ASSUME `k' = 2`]); (ASM_REWRITE_TAC[]); (NEW_GOAL `initial_sublist [u0; u1:real^3] ul /\ LENGTH [u0; u1] = 1 + 1`); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (REWRITE_WITH `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[EL; HD; ARITH_RULE `1 = SUC 0`; TL]); (REWRITE_TAC[DIHV_SYM_2]); (REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `d < &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `&0 < r` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d ==> max d (--(&1)) = d`)); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================== *) (NEW_GOAL `F`); (NEW_GOAL `azim (u0:real^3) u1 s3 m = (if azim u0 u1 m s3 = &0 then &0 else &2 * pi - azim u0 u1 m s3)`); (MATCH_MP_TAC AZIM_COMPL); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `s3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b, d, c}`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `(&0 < pi)`); (REWRITE_TAC[PI_POS]); (UNDISCH_TAC `~(azim (u0:real^3) u1 m s3 < pi)`); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (STRIP_TAC); (NEW_GOAL `azim (u0:real^3) u1 m s3 = pi`); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `~coplanar {u0, u1, m, s3:real^3}`); (REWRITE_TAC[] THEN MATCH_MP_TAC AZIM_EQ_0_PI_IMP_COPLANAR); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (* Case k >= 4 *) (* ========================================================================= *) (ASM_CASES_TAC `k >= 4`); (NEW_GOAL `?u2 u3. vl = [u0; u1;u2;u3:real^3]`); (NEW_GOAL `?v0 v1 u2 u3. vl = [v0; v1;u2;u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (REWRITE_WITH `u0 = v0:real^3`); (REWRITE_WITH `v0:real^3 = HD (truncate_simplex 1 vl)`); (REWRITE_TAC[ASSUME `vl = [v0;v1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (REWRITE_WITH `u1 = v1:real^3`); (REWRITE_WITH `v1:real^3 = HD (TL (truncate_simplex 1 vl))`); (REWRITE_TAC[ASSUME `vl = [v0;v1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `L = aff_ge{u0, u1} {u2, u3:real^3}`); (REWRITE_WITH `vol (X INTER D) = vol (L INTER D)`); (AP_TERM_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4; ARITH_RULE `4 >= 4`;set_of_list]); (COND_CASES_TAC); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `A = B <=> A SUBSET B /\ B SUBSET A`]); (STRIP_TAC); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> A INTER X SUBSET B INTER X`)); (REWRITE_TAC[Marchal_cells_2.CONVEX_HULL_4_SUBSET_AFF_GE_2_2]); (MATCH_MP_TAC (SET_RULE `(!x. x IN A /\ x IN B ==> x IN C) ==> A INTER B SUBSET C INTER B`)); (NEW_GOAL `DISJOINT {u0,u1:real^3} {u2, u3}`); (REWRITE_TAC[DISJOINT]); (MATCH_MP_TAC (MESON[] `(~A:bool ==> F) ==> A`)); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN REWRITE_TAC[SET_RULE `A INTER X SUBSET A`]); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (NEW_GOAL `u3 IN {u0, u1:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (SIMP_TAC[ASSUME `DISJOINT {u0, u1} {u2, u3:real^3}`; AFF_GE_2_2]); (REWRITE_TAC[CONVEX_HULL_4; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `t1:real` THEN EXISTS_TAC `t2:real` THEN EXISTS_TAC `t3:real` THEN EXISTS_TAC `t4:real`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= a <=> (a < &0 ==> F)`]); (STRIP_TAC); (UNDISCH_TAC `conic_cap (u0:real^3) u1 r d x`); (REWRITE_TAC[MESON[IN] `conic_cap u0 u1 r d x <=> x IN conic_cap u0 u1 r d`; GSYM (ASSUME `D = conic_cap (u0:real^3) u1 r d`)]); (EXPAND_TAC "D"); (REWRITE_TAC[IN_INTER; MESON[] `~(x:bool /\ y) <=> (~x \/ ~y)`]); (DISJ1_TAC); (REWRITE_TAC[IN_BALL] THEN STRIP_TAC); (NEW_GOAL `(?b1:real. b1 IN P2 /\ (!x. x IN P2 ==> b1 <= x))`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f2:(real^3)list -> real) vl`); (EXPAND_TAC "P2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (NEW_GOAL `r2 = (@b. b IN P2 /\ (!x. x IN P2 ==> b <= x:real))`); (EXPAND_TAC "r2"); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f2:(real^3)list -> real) vl`); (EXPAND_TAC "P2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (ABBREV_TAC `Q1 = (\b:real. b IN P2 /\ (!x. x IN P2 ==> b <= x))`); (NEW_GOAL `(Q1:real->bool) r2`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b1:real` THEN EXPAND_TAC "Q1"); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q1" THEN REPEAT STRIP_TAC); (NEW_GOAL `r2 <= f2 (vl:(real^3)list)`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P2" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN EXPAND_TAC "f2" THEN REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `vl= [u0; u1; u2; u3:real^3]`] THEN STRIP_TAC); (NEW_GOAL `!v. v IN affine hull {u1, u2, u3:real^3} ==> r2 <= dist (u0, v)`); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,closest_point (affine hull {u1, u2, u3}) u0) <= dist (u0, v:real^3)`); (MATCH_MP_TAC CLOSEST_POINT_LE); (ASM_REWRITE_TAC[CLOSED_AFFINE_HULL]); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `r <= dist (u0:real^3, x)`); (REWRITE_TAC[dist]); (REWRITE_WITH `u0:real^3 - x = (t1 + t2 + t3 + t4) % u0 - x`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ADD_RDISTRIB]); (ASM_REWRITE_TAC[VECTOR_ARITH `(t1 % u0 + t2 % u0 + t3 % u0 + t4 % u0) - (t1 % u0 + t2 % u1 + t3 % u2 + t4 % u3) = (t2 + t3 + t4) % u0 - (t2 % u1 + t3 % u2 + t4 % u3)`]); (ABBREV_TAC `y:real^3 = t2 /(t2 + t3 + t4) % u1 + t3 /(t2 + t3 + t4) % u2 + t4 /(t2 + t3 + t4) % u3`); (REWRITE_WITH `(t2 % u1 + t3 % u2 + t4 % u3) = (t2 + t3 + t4) % (y:real^3)`); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_ARITH `x % (t2 / x % u1 + t3 / x % u2 + t4 / x % u3) = (x / x) % (t2 % u1 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `(t2 + t3 + t4) / (t2 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t1 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1`); (REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `a % x - a % y = a % (x - y)`; NORM_MUL]); (NEW_GOAL `&1 < t2 + t3 + t4`); (UNDISCH_TAC `t1 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1`); (REAL_ARITH_TAC); (REWRITE_WITH `abs (t2 + t3 + t4) = t2 + t3 + t4`); (REWRITE_TAC[REAL_ABS_REFL] THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC[GSYM dist]); (NEW_GOAL `r2 <= dist (u0, y:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `t2 / (t2 + t3 + t4)` THEN EXISTS_TAC `t3 / (t2 + t3 + t4)` THEN EXISTS_TAC `t4 / (t2 + t3 + t4)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (MATCH_MP_TAC REAL_DIV_REFL); (UP_ASM_TAC THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `r2 <= (t2 + t3 + t4) * dist (u0,y:real^3)`); (NEW_GOAL `dist (u0,y) <= (t2 + t3 + t4) * dist (u0,y:real^3)`); (REWRITE_TAC[REAL_ARITH `a <= b * a <=> &0 <= (b - &1) * a`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (DEL_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (EXPAND_TAC "r" THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `dist (u0, x:real^3) < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (* ========================================================================== *) (REWRITE_TAC[REAL_ARITH `&0 <= a <=> (a < &0 ==> F)`]); (STRIP_TAC); (UNDISCH_TAC `conic_cap (u0:real^3) u1 r d x`); (REWRITE_TAC[MESON[IN] `conic_cap u0 u1 r d x <=> x IN conic_cap u0 u1 r d`; GSYM (ASSUME `D = conic_cap (u0:real^3) u1 r d`)]); (EXPAND_TAC "D"); (REWRITE_TAC[IN_INTER; MESON[] `~(x:bool /\ y) <=> (~x \/ ~y)`]); (DISJ2_TAC); (REWRITE_TAC[IN; IN_ELIM_THM; rcone_gt; rconesgn] THEN STRIP_TAC); (NEW_GOAL `(?b1:real. b1 IN P4 /\ (!x. x IN P4 ==> x <= b1))`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f4:(real^3)list -> real) vl`); (EXPAND_TAC "P4" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (NEW_GOAL `d2 = (@b. b IN P4 /\ (!x. x IN P4 ==> x <= b:real))`); (EXPAND_TAC "d2"); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f4:(real^3)list -> real) vl`); (EXPAND_TAC "P4" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (ABBREV_TAC `Q1 = (\b:real. b IN P4 /\ (!x. x IN P4 ==> x <= b))`); (NEW_GOAL `(Q1:real->bool) d2`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b1:real` THEN EXPAND_TAC "Q1"); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q1" THEN REPEAT STRIP_TAC); (NEW_GOAL `f4 (vl:(real^3)list) <= d2`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P4" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 4 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN EXPAND_TAC "f4"); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `vl= [u0; u1; u2; u3:real^3]`] THEN STRIP_TAC); (ABBREV_TAC `xx = smallest_angle_line u2 u3 u0 u1`); (MP_TAC (ASSUME `smallest_angle_line u2 u3 u0 u1 = xx`)); (REWRITE_TAC[smallest_angle_line; smallest_angle_set]); (ABBREV_TAC `Q2 = (\x:real^3. x IN convex hull {u2, u3} /\ (!y. y IN convex hull {u2, u3} ==> ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)) <= ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0))))`); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN STRIP_TAC); (NEW_GOAL `(Q2:real^3->bool) xx`); (ONCE_ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXPAND_TAC "Q2"); (MATCH_MP_TAC SMALLEST_ANGLE_LINE_EXISTS); (STRIP_TAC); (ASM_REWRITE_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list;ARITH_RULE `4 >= 4`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q2"); (STRIP_TAC); (ABBREV_TAC `g = (\y:real^3. ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)))`); (NEW_GOAL `d < (g:real^3->real) x`); (EXPAND_TAC "g"); (REWRITE_WITH `d < ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0:real^3)) <=> d * (norm (x - u0) * norm (u1 - u0)) < (x - u0) dot (u1 - u0)`); (MATCH_MP_TAC REAL_LT_RDIV_EQ); (MATCH_MP_TAC (REAL_ARITH `&0 <= a /\ ~(a = &0) ==> &0 < a`)); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (ASM_REWRITE_TAC[NORM_POS_LE]); (REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `x - y = vec 0 <=> x = y`]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `t1 % u0 + t2 % u1 + t3 % u2 + t4 % u3 = u0:real^3 <=> t1 % u0 + t2 % u1 + t3 % u2 + t4 % u3 = (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `t1 % u0 + u = (t1 + t2) % u0 <=> u = t2 % u0`]); (STRIP_TAC); (MP_TAC (ASSUME `~NULLSET (X INTER D)`) THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4;set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (REWRITE_TAC[affine_dependent]); (EXISTS_TAC `u1:real^3`); (STRIP_TAC); (SET_TAC[]); (NEW_GOAL `~(u1 IN {u0, u2, u3:real^3})`); (STRIP_TAC); (MP_TAC (ASSUME `~NULLSET (X INTER D)`) THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4;set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_WITH `{u0, u1, u2, u3} = {u0:real^3,u2, u3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (SET_TAC[]); (REWRITE_WITH `{u0, u1, u2, u3} DELETE u1 = {u0, u2, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(t2 + t3 + t4) / t2`); (EXISTS_TAC `(-- t3) / t2`); (EXISTS_TAC `(-- t4) / t2`); (STRIP_TAC); (REWRITE_WITH `(t2 + t3 + t4) / t2 + --t3 / t2 + --t4 / t2 = t2 / t2`); (REAL_ARITH_TAC); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_WITH `u1 = (t2 + t3 + t4) / t2 % u0 + --t3 / t2 % u2 + --t4 / t2 % u3:real^3 <=> u1 = (&1 / t2) % ((t2 + t3 + t4) % u0 - t3 % u2 - t4 % u3)`); (VECTOR_ARITH_TAC); (REWRITE_TAC[GSYM (ASSUME `t2 % u1 + t3 % u2 + t4 % u3 = (t2 + t3 + t4) % u0:real^3`)]); (REWRITE_TAC[VECTOR_ARITH `(t2 % u1 + t3 % u2 + t4 % u3) - t3 % u2 - t4 % u3 = t2 % u1`]); (REWRITE_TAC[VECTOR_MUL_ASSOC]); (REWRITE_WITH `&1 / t2 * t2 = &1`); (REWRITE_TAC[REAL_ARITH `&1 / t2 * t2 = t2 / t2`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (REWRITE_TAC[REAL_ARITH `a * b * c < d <=> d > b * c * a`; GSYM dist]); (ASM_REWRITE_TAC[]); (NEW_GOAL `g x <= (g:real^3->real) xx`); (NEW_GOAL `!y. y IN convex hull {u2 , u3:real^3} ==> g y <= g xx`); (EXPAND_TAC "g" THEN ASM_REWRITE_TAC[]); (NEW_GOAL `&0 < (t3 + t4)`); (MATCH_MP_TAC (REAL_ARITH `(&0 <= x) /\ ~(x = &0) ==> &0 < x`)); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_ADD); (ASM_REWRITE_TAC[]); (STRIP_TAC); (NEW_GOAL `t3 = &0 /\ t4 = &0`); (UNDISCH_TAC `&0 <= t3` THEN UNDISCH_TAC `&0 <= t4` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `(x - u0) dot (u1 - u0:real^3) > dist (x,u0) * dist (u1,u0) * d`); (REWRITE_WITH `x = t1 % u0 + t2 % u1:real^3`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (MATCH_MP_TAC (REAL_ARITH `a <= &0 /\ &0 <= b ==> ~(a > b)`)); (STRIP_TAC); (REWRITE_WITH `(t1 % u0 + t2 % u1) - u0 = (t1 % u0 + t2 % u1) - (t1 + t2 + t3 + t4) % u0:real^3`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[ASSUME `t3 = &0`; ASSUME `t4 = &0`; VECTOR_ARITH `(t1 % u0 + t2 % u1) - (t1 + t2 + &0 + &0) % u0 = t2 % (u1 - u0)`; DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= (--a) * b`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DOT_POS_LE]); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c/\ c < &1`); (REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (ABBREV_TAC `y = t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3:real^3`); (NEW_GOAL `(g:real^3->real) y <= g xx`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM]); (EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (MATCH_MP_TAC REAL_LE_DIV); (ASM_SIMP_TAC[REAL_LE_ADD]); (ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_DIV]); (REWRITE_TAC[REAL_ARITH `a / x + b / x = (a + b) / x`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (ABBREV_TAC `w = t1 / (t1 + t3 + t4) % u0 + t3 / (t1 + t3 + t4) % u2 + t4 / (t1 + t3 + t4) % u3:real^3`); (NEW_GOAL `(g:real^3->real) y = g w`); (EXPAND_TAC "g"); (REWRITE_WITH `y:real^3 - u0 = &1 / (t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0)`); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_ARITH `(t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3) - u0 = &1 / (t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0) <=> (t3 + t4) / (t3 + t4) % u0 = u0`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_MUL; DOT_LMUL]); (REWRITE_WITH `w:real^3 - u0 = &1 / (t1 + t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0)`); (EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `(t1 / (t1 + t3 + t4) % u0 + t3 / (t1 + t3 + t4) % u2 + t4 / (t1 + t3 + t4) % u3) - u0 = &1 / (t1 + t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0) <=> (t1 + t3 + t4) / (t1 + t3 + t4) % u0 = u0`]); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_MUL; DOT_LMUL]); (REWRITE_WITH `abs (&1 / (t3 + t4)) = &1 / (t3 + t4)`); (REWRITE_TAC[REAL_ABS_REFL]); (ASM_SIMP_TAC[REAL_LE_DIV;REAL_LE_ADD; REAL_ARITH `&0 <= &1`]); (REWRITE_WITH `abs (&1 / (t1 + t3 + t4)) = &1 / (t1 + t3 + t4)`); (REWRITE_TAC[REAL_ABS_REFL]); (MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_ARITH `&0 <= &1`]); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `(a * x) / ((a * y) * z) = (a * x) / (a * (y * z))`]); (ABBREV_TAC `a1 = norm (t3 % u2 + t4 % u3 - (t3 + t4) % u0) * norm (u1 - u0:real^3)`); (NEW_GOAL `~(a1 = &0)`); (EXPAND_TAC "a1" THEN ASM_REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `(a - b = vec 0 <=> a = b)/\(a + b-c = vec 0 <=> a + b = c)`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell4; MCELL_EXPLICIT; set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 + t3 / (t3 + t4) + t4 / (t3 + t4) = (t3 + t4) / (t3 + t4)`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `&0 % u1 + t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3 = (&1 / (t3 + t4)) % (t3 % u2 + t4 % u3)`]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (NEW_GOAL `~(&1 / (t3 + t4) = &0)`); (NEW_GOAL `&0 < &1 / (t3 + t4)`); (MATCH_MP_TAC REAL_LT_DIV); (ASM_REWRITE_TAC[REAL_ARITH `&0 < &1`]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_WITH `(&1 / (t3 + t4) * ((t3 % u2 + t4 % u3 - (t3 + t4) % u0) dot (u1 - u0))) / (&1 / (t3 + t4) * a1) = ((t3 % u2 + t4 % u3 - (t3 + t4) % u0) dot (u1 - u0:real^3)) / a1`); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[Trigonometry1.REAL_DIV_MUL2]); (NEW_GOAL `~(&1 / (t1 + t3 + t4) = &0)`); (NEW_GOAL `&0 < &1 / (t1 + t3 + t4)`); (MATCH_MP_TAC REAL_LT_DIV); (ASM_REWRITE_TAC[REAL_ARITH `&0 < &1`]); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_WITH `(&1 / (t1 + t3 + t4) * ((t3 % u2 + t4 % u3 - (t3 + t4) % u0) dot (u1 - u0))) / (&1 / (t1 + t3 + t4) * a1) = ((t3 % u2 + t4 % u3 - (t3 + t4) % u0) dot (u1 - u0:real^3)) / a1`); (UP_ASM_TAC THEN UNDISCH_TAC `~(a1 = &0)` THEN MESON_TAC[Trigonometry1.REAL_DIV_MUL2]); (NEW_GOAL `(g:real^3->real) x <= g w`); (EXPAND_TAC "g"); (REWRITE_WITH `((x - u0) dot (u1 - u0:real^3)) / (norm (x - u0) * norm (u1 - u0)) <= ((w - u0) dot (u1 - u0)) / (norm (w - u0) * norm (u1 - u0)) <=> ((x - u0) dot (u1 - u0)) * (norm (w - u0) * norm (u1 - u0)) <= ((w - u0) dot (u1 - u0)) * (norm (x - u0) * norm (u1 - u0))`); (MATCH_MP_TAC RAT_LEMMA4); (STRIP_TAC); (MATCH_MP_TAC REAL_LT_MUL); (ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_ARITH `x - b = vec 0 <=> x = b`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell4; MCELL_EXPLICIT; set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{u0, u1, u2, u3} = {u1, u0, u2, u3}`]); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(t2 + t3 + t4) / t2` THEN EXISTS_TAC `(--t3) / t2` THEN EXISTS_TAC `(--t4) / t2`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `(t2 + t3 + t4) / t2 + --t3 / t2 + --t4 / t2 = t2 / t2`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_WITH `(t2 + t3 + t4) = &1 - t1`); (UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (NEW_GOAL `u0 - t1 % u0 - t3 % u2 - t4 % u3:real^3 = t2 % u1`); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `(&1 - t1) / t2 % u0 + --t3 / t2 % u2 + --t4 / t2 % u3 = (&1 / t2) % (u0 - t1 % u0 - t3 % u2 - t4 % u3)`]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `t2 / t2 = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (MATCH_MP_TAC REAL_LT_MUL); (ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_ARITH `x - b = vec 0 <=> x = b`]); (EXPAND_TAC "w" THEN STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell4; MCELL_EXPLICIT; set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 + t3 / (t3 + t4) + t4 / (t3 + t4) = (t3 + t4) / (t3 + t4)`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `&0 % u1 + t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3 = (&1 / (t3 + t4)) % (t3 % u2 + t4 % u3)`]); (UP_ASM_TAC THEN REWRITE_TAC[VECTOR_ARITH `t1 / x % u0 + t3 / x % u2 + t4 / x % u3 = (&1 / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `&1 / (t1 + t3 + t4) % (t1 % u0 + t3 % u2 + t4 % u3) = u0 <=> t1 % u0 + t3 % u2 + t4 % u3 = (t1 + t3 + t4) % u0:real^3`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 +t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `t1 % u0 + t3 % u2 + t4 % u3 = (t1 + t3 + t4) % u0 <=> t3 % u2 + t4 % u3 = (t3 + t4) % u0`]); (STRIP_TAC THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (REWRITE_WITH `x = t2 % u1 + (t1 + t3 + t4) % w:real^3`); (ASM_REWRITE_TAC[] THEN EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `x % (t1 /x % u0 + t3 / x % u2 + t4 /x % u3) = (x / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (ABBREV_TAC `t = t1 + t3 + t4`); (REWRITE_WITH `(t2 % u1 + t % w) - u0:real^3 = (t2 % u1 + t % w) - (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_WITH `t1 + t2 + t3 + t4 = t2 + t:real`); (EXPAND_TAC "t" THEN REAL_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `(t2 % u1 + t % w) - (t2 + t) % u0 = t2 % (u1 - u0) + t % (w - u0)`]); (ABBREV_TAC `x1 = u1 - u0:real^3`); (ABBREV_TAC `x2 = w - u0:real^3`); (REWRITE_WITH `(t2 % x1 + t % x2) dot x1 = t2 * norm x1 pow 2 + t * x2 dot (x1:real^3)`); (REWRITE_TAC[NORM_POW_2]); (VECTOR_ARITH_TAC); (NEW_GOAL `t2 * norm x1 pow 2 * norm x2 * norm x1 <= t2 * (x2 dot x1) * norm x1 * norm (x1:real^3)`); (REWRITE_TAC[REAL_POW_2; REAL_ARITH `t2 * (x1 * x1) * x2 * x1 <= t2 * x3 * x1 * x1 <=> &0 <= (x1 pow 2) * (--t2) * (x2 * x1 - x3)`]); (MATCH_MP_TAC REAL_LE_MUL); (ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[REAL_ARITH `&0 <= a - b <=> b <= a`]); (STRIP_TAC); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ]); (NEW_GOAL `t2 * (x2 dot x1) * norm x1 * norm x1 + t * (x2 dot x1) * norm x2 * norm x1 <= (x2 dot x1) * norm (t2 % x1 + t % x2) * norm (x1:real^3)`); (REWRITE_TAC[REAL_ARITH `t2 * x3 * x1 * x1 + t * x3 * x2 * x1 <= x3 * x4 * x1 <=> &0 <= (x1 * x3) * (x4 - t2 * x1 - t * x2)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE]); (ASM_CASES_TAC `x2 dot (x1:real^3) < &0`); (NEW_GOAL `F`); (NEW_GOAL `(g:real^3->real) x <= &0`); (EXPAND_TAC "g"); (REWRITE_TAC[REAL_ARITH `a / b <= &0 <=> &0 <= (--a) / b`]); (MATCH_MP_TAC REAL_LE_DIV); (SIMP_TAC[NORM_POS_LE; REAL_LE_MUL]); (REWRITE_WITH `x = t2 % u1 + (t1 + t3 + t4) % w:real^3`); (ASM_REWRITE_TAC[] THEN EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `x % (t1 /x % u0 + t3 / x % u2 + t4 /x % u3) = (x / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (EXPAND_TAC "t"); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= --a <=> a <= &0`]); (REWRITE_WITH `(t2 % u1 + (t1 + t3 + t4) % w) - u0:real^3 = (t2 % u1 + (t1 + t3 + t4) % w) - (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_WITH `(t2 % u1 + (t1 + t3 + t4) % w) - (t1 + t2 + t3 + t4) % u0 = t2 % x1 + t % x2:real^3`); (EXPAND_TAC "x1" THEN EXPAND_TAC "x2" THEN EXPAND_TAC "t" THEN VECTOR_ARITH_TAC); (NEW_GOAL `t % x2 dot (x1:real^3) <= &0`); (REWRITE_TAC[DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= a * (--b)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `t2 % x1 dot (x1:real^3) <= &0`); (REWRITE_TAC[DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= (--a) * b`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[DOT_POS_LE]); (REWRITE_TAC[DOT_LADD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `d < (g:real^3->real) x`); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1`); (REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC [REAL_ARITH `&0 <= a - b * d - c <=> c <= a + (--b) * d`]); (REWRITE_WITH `t * norm (x2:real^3) = abs t * norm x2`); (AP_THM_TAC THEN AP_TERM_TAC); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[REAL_ABS_REFL]); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_WITH `(--t2) * norm (x1:real^3) = abs (--t2) * norm x1`); (AP_THM_TAC THEN AP_TERM_TAC); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[REAL_ABS_REFL]); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_TAC[GSYM NORM_MUL]); (REWRITE_WITH `norm (t % x2:real^3) = norm ((t2 % x1 + t % x2) + (--t2 % x1))`); (AP_TERM_TAC THEN VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_TRIANGLE]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `(g:real^3->real) y <= g xx`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `(g:real^3->real) xx <= d2`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P4"); (EXPAND_TAC "g" THEN EXPAND_TAC "f4"); (REWRITE_TAC[IN_ELIM_THM; IN]); (EXISTS_TAC `vl:(real^3)list`); (REWRITE_TAC[ASSUME `barV V 3 vl`; ASSUME `vl = [u0;u1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1]); (SIMP_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (EXPAND_TAC "xx"); (SIMP_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell 4 V vl = mcell k V vl`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (REWRITE_TAC[GSYM (ASSUME `X = mcell k V vl`)]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN EXPAND_TAC "d"); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell4; MCELL_EXPLICIT; set_of_list]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (NEW_GOAL `~coplanar {u0, u1, u2, u3:real^3}`); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (STRIP_TAC); (ASM_SIMP_TAC[mcell4; MCELL_EXPLICIT; set_of_list]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (ASM_REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (ASM_CASES_TAC `azim u0 u1 u2 (u3:real^3) < pi`); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 u2 u3)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {u2, u3} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_WITH `aff_ge {u0, u1:real^3} {u2, u3} = aff_gt {u0, u1} {u2, u3} UNION UNIONS {aff_ge {u0, u1} ({u2, u3} DELETE a) | a | a IN {u2, u3}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `u3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({u2, u3} DELETE a) | a | a IN {u2, u3}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {u2} UNION aff_ge {u0, u1:real^3} {u3}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u2}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u2:real^3} = {u0,u1} UNION {u2}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u3}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u3:real^3} = {u0,u1} UNION {u3}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (REWRITE_WITH `{u0, u1, u2, u3} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (* begin the computation *) (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 u2 u3) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 u2 u3 / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, u2} /\ ~collinear {u0, u1, u3}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 u2 u3 = dihV u0 u1 u2 u3`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(4, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `4 <= 4`] THEN ASM_REWRITE_TAC[]); (STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] [u0; u1; u2; u3] /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 4 /\ mcell k' V ul = mcell 4 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell k' V ul INTER mcell 4 V vl = X`); (REWRITE_WITH `mcell 4 V vl = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (SET_TAC[ASSUME `X = mcell k' V ul`]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `~NULLSET X` THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu4]); (REWRITE_WITH `dihV (EL 0 (ul:(real^3)list)) (EL 1 ul) (EL 2 ul) (EL 3 ul) = dihV u0 u1 u2 (u3:real^3)`); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `{EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = {u0, u1,u2,u3:real^3}`); (REWRITE_WITH ` {EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = {u0, u1,u2,u3:real^3} <=> convex hull {EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = convex hull {u0, u1,u2,u3:real^3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.CONVEX_HULL_EQ_EQ_SET_EQ); (REPEAT STRIP_TAC); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (UNDISCH_TAC `affine_dependent {EL 0 ul, EL 1 ul, EL 2 ul, (EL 3 ul):real^3}`); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (REWRITE_WITH `convex hull {u0, u1, u2, u3:real^3} = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (COND_CASES_TAC); (MESON_TAC[]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_TAC[set_of_list; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `1 = SUC 0`]); (STRIP_TAC); (ASM_CASES_TAC `EL 2 ul = u2:real^3`); (NEW_GOAL `EL 3 ul = u3:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u2,u3:real^3}` THEN REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (NEW_GOAL `EL 2 ul = u3:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0:real^3, u1, EL 2 ul, EL 3 ul} = {u0, u1, EL 3 ul}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u2,u3:real^3}` THEN REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0,u1:real^3, EL 3 ul}`; COPLANAR_3]); (NEW_GOAL `EL 3 ul = u2:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u2,u3:real^3}` THEN REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u3:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[DIHV_SYM_2]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN MESON_TAC[]); (UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d /\ --(&1) < &0 ==> max d (--(&1)) = d`)); (REWRITE_TAC[REAL_NEG_LT0]); (STRIP_TAC); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UNDISCH_TAC `k' = 4 /\ mcell k' V ul = mcell 4 V vl` THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (* OK here *) (ASM_CASES_TAC `azim u0 u1 u3 (u2:real^3) < pi`); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (STRIP_TAC); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 u3 u2)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {u3, u2} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (REWRITE_WITH `aff_ge {u0, u1:real^3} {u2, u3} = aff_gt {u0, u1} {u2, u3} UNION UNIONS {aff_ge {u0, u1} ({u2, u3} DELETE a) | a | a IN {u2, u3}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u3, u2:real^3}`); (REWRITE_WITH `{u0, u1, u3, u2} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `u3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u3, u2:real^3}`); (REWRITE_WITH `{u0, u1, u3, u2} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({u2, u3} DELETE a) | a | a IN {u2, u3}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {u2} UNION aff_ge {u0, u1:real^3} {u3}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u2}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u2:real^3} = {u0,u1} UNION {u2}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u3}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u3:real^3} = {u0,u1} UNION {u3}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u3, u2:real^3}`); (REWRITE_WITH `{u0, u1, u3, u2} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u3 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u3, u2:real^3}`); (REWRITE_WITH `{u0, u1, u3, u2} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 u3 u2) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 u3 u2 / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, u2} /\ ~collinear {u0, u1, u3}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u3:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 u3 u2 = dihV u0 u1 u3 u2`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u3:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(4, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `4 <= 4`] THEN ASM_REWRITE_TAC[]); (STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] [u0; u1; u2; u3] /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 4 /\ mcell k' V ul = mcell 4 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell k' V ul INTER mcell 4 V vl = X`); (REWRITE_WITH `mcell 4 V vl = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (SET_TAC[ASSUME `X = mcell k' V ul`]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `~NULLSET X` THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu4]); (REWRITE_WITH `dihV (EL 0 (ul:(real^3)list)) (EL 1 ul) (EL 2 ul) (EL 3 ul) = dihV u0 u1 u2 (u3:real^3)`); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `{EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = {u0, u1,u2,u3:real^3}`); (REWRITE_WITH ` {EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = {u0, u1,u2,u3:real^3} <=> convex hull {EL 0 ul, EL 1 ul, EL 2 ul, EL 3 ul} = convex hull {u0, u1,u2,u3:real^3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.CONVEX_HULL_EQ_EQ_SET_EQ); (REPEAT STRIP_TAC); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (UNDISCH_TAC `affine_dependent {EL 0 ul, EL 1 ul, EL 2 ul, (EL 3 ul):real^3}`); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (REWRITE_WITH `convex hull {u0, u1, u2, u3:real^3} = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (COND_CASES_TAC); (MESON_TAC[]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; set_of_list]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_TAC[set_of_list; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; mcell4; ASSUME `X = mcell k' V ul`; ASSUME `k' = 4`]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `1 = SUC 0`]); (STRIP_TAC); (ASM_CASES_TAC `EL 2 ul = u2:real^3`); (NEW_GOAL `EL 3 ul = u3:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u3,u2:real^3}`); (REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (NEW_GOAL `EL 2 ul = u3:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0:real^3, u1, EL 2 ul, EL 3 ul} = {u0, u1, EL 3 ul}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u3,u2:real^3}`); (REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0,u1:real^3, EL 3 ul}`; COPLANAR_3]); (NEW_GOAL `EL 3 ul = u2:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u3:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u3,u2:real^3}`); (REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u2, u3:real^3}`); ASSUME `{u0, u1, EL 2 ul, EL 3 ul} = {u0, u1, u3:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[DIHV_SYM_2]); (REWRITE_TAC[DIHV_SYM_2]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN MESON_TAC[]); (UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d /\ --(&1) < &0 ==> max d (--(&1)) = d`)); (REWRITE_TAC[REAL_NEG_LT0]); (STRIP_TAC); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UNDISCH_TAC `k' = 4 /\ mcell k' V ul = mcell 4 V vl` THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================== *) (NEW_GOAL `F`); (NEW_GOAL `azim (u0:real^3) u1 u3 u2 = (if azim u0 u1 u2 u3 = &0 then &0 else &2 * pi - azim u0 u1 u2 u3)`); (MATCH_MP_TAC AZIM_COMPL); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u3:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b, d, c}`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `(&0 < pi)`); (REWRITE_TAC[PI_POS]); (UNDISCH_TAC `~(azim (u0:real^3) u1 u2 u3 < pi)`); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (STRIP_TAC); (NEW_GOAL `azim (u0:real^3) u1 u2 u3 = pi`); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `~coplanar {u0, u1, u2, u3:real^3}`); (REWRITE_TAC[] THEN MATCH_MP_TAC AZIM_EQ_0_PI_IMP_COPLANAR); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (* Case k = 3 *) (* ========================================================================= *) (NEW_GOAL `k = 3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `2 <= k` THEN ARITH_TAC); (NEW_GOAL `?u2 u3. vl = [u0; u1;u2;u3:real^3]`); (NEW_GOAL `?v0 v1 u2 u3. vl = [v0; v1;u2;u3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `u3:real^3`); (REWRITE_WITH `u0 = v0:real^3`); (REWRITE_WITH `v0:real^3 = HD (truncate_simplex 1 vl)`); (REWRITE_TAC[ASSUME `vl = [v0;v1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1; HD]); (REWRITE_WITH `u1 = v1:real^3`); (REWRITE_WITH `v1:real^3 = HD (TL (truncate_simplex 1 vl))`); (REWRITE_TAC[ASSUME `vl = [v0;v1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `L = aff_ge{u0, u1} {u2, mxi V vl}`); (REWRITE_WITH `vol (X INTER D) = vol (L INTER D)`); (AP_TERM_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; mcell3; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (COND_CASES_TAC); (ABBREV_TAC `m = mxi V vl`); (REWRITE_WITH `mxi V [u0; u1; u2; u3] = m`); (EXPAND_TAC "m" THEN DEL_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `A = B <=> A SUBSET B /\ B SUBSET A`]); (STRIP_TAC); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> A INTER X SUBSET B INTER X`)); (REWRITE_TAC[Marchal_cells_2.CONVEX_HULL_4_SUBSET_AFF_GE_2_2]); (MATCH_MP_TAC (SET_RULE `(!x. x IN A /\ x IN B ==> x IN C) ==> A INTER B SUBSET C INTER B`)); (NEW_GOAL `DISJOINT {u0,u1:real^3} {u2, m}`); (REWRITE_TAC[DISJOINT]); (MATCH_MP_TAC (MESON[] `(~A:bool ==> F) ==> A`)); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN REWRITE_TAC[SET_RULE `A INTER X SUBSET A`]); (ASM_SIMP_TAC[MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; mcell3; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0; u1; u2; u3] = m`); (EXPAND_TAC "m" THEN REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (NEW_GOAL `m IN {u0, u1:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (SIMP_TAC[ASSUME `DISJOINT {u0, u1} {u2, m:real^3}`; AFF_GE_2_2]); (REWRITE_TAC[CONVEX_HULL_4; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (EXISTS_TAC `t1:real` THEN EXISTS_TAC `t2:real` THEN EXISTS_TAC `t3:real` THEN EXISTS_TAC `t4:real`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= a <=> (a < &0 ==> F)`]); (STRIP_TAC); (UNDISCH_TAC `conic_cap (u0:real^3) u1 r d x`); (REWRITE_TAC[MESON[IN] `conic_cap u0 u1 r d x <=> x IN conic_cap u0 u1 r d`; GSYM (ASSUME `D = conic_cap (u0:real^3) u1 r d`)]); (EXPAND_TAC "D"); (REWRITE_TAC[IN_INTER; MESON[] `~(x:bool /\ y) <=> (~x \/ ~y)`]); (DISJ1_TAC); (REWRITE_TAC[IN_BALL] THEN STRIP_TAC); (NEW_GOAL `(?b1:real. b1 IN P1 /\ (!x. x IN P1 ==> b1 <= x))`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f1:(real^3)list -> real) vl`); (EXPAND_TAC "P1" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (NEW_GOAL `r1 = (@b. b IN P1 /\ (!x. x IN P1 ==> b <= x:real))`); (EXPAND_TAC "r1"); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f1:(real^3)list -> real) vl`); (EXPAND_TAC "P1" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (ABBREV_TAC `Q1 = (\b:real. b IN P1 /\ (!x. x IN P1 ==> b <= x))`); (NEW_GOAL `(Q1:real->bool) r1`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b1:real` THEN EXPAND_TAC "Q1"); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q1" THEN REPEAT STRIP_TAC); (NEW_GOAL `r1 <= f1 (vl:(real^3)list)`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P1" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN EXPAND_TAC "f1" THEN REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `vl= [u0; u1; u2; u3:real^3]`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0;u1;u2;u3:real^3]`]); (STRIP_TAC); (NEW_GOAL `!v. v IN affine hull {u1, u2, m:real^3} ==> r1 <= dist (u0, v)`); (REPEAT STRIP_TAC); (NEW_GOAL `dist (u0,closest_point (affine hull {u1, u2, m}) u0) <= dist (u0, v:real^3)`); (MATCH_MP_TAC CLOSEST_POINT_LE); (ASM_REWRITE_TAC[CLOSED_AFFINE_HULL]); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `r <= dist (u0:real^3, x)`); (REWRITE_TAC[dist]); (REWRITE_WITH `u0:real^3 - x = (t1 + t2 + t3 + t4) % u0 - x`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ADD_RDISTRIB]); (ASM_REWRITE_TAC[VECTOR_ARITH `(t1 % u0 + t2 % u0 + t3 % u0 + t4 % u0) - (t1 % u0 + t2 % u1 + t3 % u2 + t4 % u3) = (t2 + t3 + t4) % u0 - (t2 % u1 + t3 % u2 + t4 % u3)`]); (ABBREV_TAC `y:real^3 = t2 /(t2 + t3 + t4) % u1 + t3 /(t2 + t3 + t4) % u2 + t4 /(t2 + t3 + t4) % m`); (REWRITE_WITH `(t2 % u1 + t3 % u2 + t4 % m) = (t2 + t3 + t4) % (y:real^3)`); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_ARITH `x % (t2 / x % u1 + t3 / x % u2 + t4 / x % u3) = (x / x) % (t2 % u1 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `(t2 + t3 + t4) / (t2 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t1 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1`); (REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `a % x - a % y = a % (x - y)`; NORM_MUL]); (NEW_GOAL `&1 < t2 + t3 + t4`); (UNDISCH_TAC `t1 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1`); (REAL_ARITH_TAC); (REWRITE_WITH `abs (t2 + t3 + t4) = t2 + t3 + t4`); (REWRITE_TAC[REAL_ABS_REFL] THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC[GSYM dist]); (NEW_GOAL `r1 <= dist (u0, y:real^3)`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `t2 / (t2 + t3 + t4)` THEN EXISTS_TAC `t3 / (t2 + t3 + t4)` THEN EXISTS_TAC `t4 / (t2 + t3 + t4)`); (STRIP_TAC); (REWRITE_TAC[REAL_ARITH `a / x + b / x + c / x = (a+b+c)/ x`]); (MATCH_MP_TAC REAL_DIV_REFL); (UP_ASM_TAC THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (NEW_GOAL `r1 <= (t2 + t3 + t4) * dist (u0,y:real^3)`); (NEW_GOAL `dist (u0,y) <= (t2 + t3 + t4) * dist (u0,y:real^3)`); (REWRITE_TAC[REAL_ARITH `a <= b * a <=> &0 <= (b - &1) * a`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (DEL_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (EXPAND_TAC "r" THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `dist (u0, x:real^3) < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (* ========================================================================== *) (REWRITE_TAC[REAL_ARITH `&0 <= a <=> (a < &0 ==> F)`]); (STRIP_TAC); (UNDISCH_TAC `conic_cap (u0:real^3) u1 r d x`); (REWRITE_TAC[MESON[IN] `conic_cap u0 u1 r d x <=> x IN conic_cap u0 u1 r d`; GSYM (ASSUME `D = conic_cap (u0:real^3) u1 r d`)]); (EXPAND_TAC "D"); (REWRITE_TAC[IN_INTER; MESON[] `~(x:bool /\ y) <=> (~x \/ ~y)`]); (DISJ2_TAC); (REWRITE_TAC[IN; IN_ELIM_THM; rcone_gt; rconesgn] THEN STRIP_TAC); (NEW_GOAL `(?b1:real. b1 IN P3 /\ (!x. x IN P3 ==> x <= b1))`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f3:(real^3)list -> real) vl`); (EXPAND_TAC "P3" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (NEW_GOAL `d1 = (@b. b IN P3 /\ (!x. x IN P3 ==> x <= b:real))`); (EXPAND_TAC "d1"); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `~(X = {}) <=> (?x. x IN X)`]); (EXISTS_TAC `(f3:(real^3)list -> real) vl`); (EXPAND_TAC "P3" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (ABBREV_TAC `Q1 = (\b:real. b IN P3 /\ (!x. x IN P3 ==> x <= b))`); (NEW_GOAL `(Q1:real->bool) d1`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `b1:real` THEN EXPAND_TAC "Q1"); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q1" THEN REPEAT STRIP_TAC); (NEW_GOAL `f3 (vl:(real^3)list) <= d1`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P3" THEN REWRITE_TAC[IN; IN_ELIM_THM]); (EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_SIMP_TAC[MCELL_EXPLICIT]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN EXPAND_TAC "f3"); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `mxi V vl = m`; ASSUME `vl= [u0; u1; u2; u3:real^3]`] THEN STRIP_TAC); (ABBREV_TAC `xx = smallest_angle_line u2 m u0 u1`); (MP_TAC (ASSUME `smallest_angle_line u2 m u0 u1 = xx`)); (REWRITE_TAC[smallest_angle_line; smallest_angle_set]); (ABBREV_TAC `Q2 = (\x:real^3. x IN convex hull {u2, m} /\ (!y. y IN convex hull {u2, m} ==> ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)) <= ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0))))`); (ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN STRIP_TAC); (NEW_GOAL `(Q2:real^3->bool) xx`); (ONCE_ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXPAND_TAC "Q2"); (MATCH_MP_TAC SMALLEST_ANGLE_LINE_EXISTS); (STRIP_TAC); (ASM_REWRITE_TAC[]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell3; set_of_list;TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (STRIP_TAC); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (UNDISCH_TAC `u0 IN convex hull {u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `m:real^3`); (MATCH_MP_TAC (SET_RULE `a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `u:real` THEN EXISTS_TAC `v:real`); (STRIP_TAC); (UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN EXPAND_TAC "Q2"); (STRIP_TAC); (ABBREV_TAC `g = (\y:real^3. ((y - u0) dot (u1 - u0)) / (norm (y - u0) * norm (u1 - u0)))`); (NEW_GOAL `d < (g:real^3->real) x`); (EXPAND_TAC "g"); (REWRITE_WITH `d < ((x - u0) dot (u1 - u0)) / (norm (x - u0) * norm (u1 - u0:real^3)) <=> d * (norm (x - u0) * norm (u1 - u0)) < (x - u0) dot (u1 - u0)`); (MATCH_MP_TAC REAL_LT_RDIV_EQ); (MATCH_MP_TAC (REAL_ARITH `&0 <= a /\ ~(a = &0) ==> &0 < a`)); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (ASM_REWRITE_TAC[NORM_POS_LE]); (REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `x - y = vec 0 <=> x = y`]); (ASM_REWRITE_TAC[]); (REWRITE_WITH `t1 % u0 + t2 % u1 + t3 % u2 + t4 % m = u0:real^3 <=> t1 % u0 + t2 % u1 + t3 % u2 + t4 % m = (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `t1 % u0 + u = (t1 + t2) % u0 <=> u = t2 % u0`]); (STRIP_TAC); (MP_TAC (ASSUME `~NULLSET (X INTER D)`) THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell3;set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (REWRITE_TAC[affine_dependent]); (EXISTS_TAC `u1:real^3`); (STRIP_TAC); (SET_TAC[]); (NEW_GOAL `~(u1 IN {u0, u2, m:real^3})`); (STRIP_TAC); (MP_TAC (ASSUME `~NULLSET (X INTER D)`) THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool` THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell3;set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_WITH `{u0, u1, u2, m} = {u0:real^3,u2, m}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (SET_TAC[]); (REWRITE_WITH `{u0, u1, u2, m} DELETE u1 = {u0, u2, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(t2 + t3 + t4) / t2`); (EXISTS_TAC `(-- t3) / t2`); (EXISTS_TAC `(-- t4) / t2`); (STRIP_TAC); (REWRITE_WITH `(t2 + t3 + t4) / t2 + --t3 / t2 + --t4 / t2 = t2 / t2`); (REAL_ARITH_TAC); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_WITH `u1 = (t2 + t3 + t4) / t2 % u0 + --t3 / t2 % u2 + --t4 / t2 % m:real^3 <=> u1 = (&1 / t2) % ((t2 + t3 + t4) % u0 - t3 % u2 - t4 % m)`); (VECTOR_ARITH_TAC); (REWRITE_TAC[GSYM (ASSUME `t2 % u1 + t3 % u2 + t4 % m = (t2 + t3 + t4) % u0:real^3`)]); (REWRITE_TAC[VECTOR_ARITH `(t2 % u1 + t3 % u2 + t4 % u3) - t3 % u2 - t4 % u3 = t2 % u1`]); (REWRITE_TAC[VECTOR_MUL_ASSOC]); (REWRITE_WITH `&1 / t2 * t2 = &1`); (REWRITE_TAC[REAL_ARITH `&1 / t2 * t2 = t2 / t2`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (REWRITE_TAC[REAL_ARITH `a * b * c < d <=> d > b * c * a`; GSYM dist]); (ASM_REWRITE_TAC[]); (NEW_GOAL `g x <= (g:real^3->real) xx`); (NEW_GOAL `!y. y IN convex hull {u2 , m:real^3} ==> g y <= g xx`); (EXPAND_TAC "g" THEN ASM_REWRITE_TAC[]); (NEW_GOAL `&0 < (t3 + t4)`); (MATCH_MP_TAC (REAL_ARITH `(&0 <= x) /\ ~(x = &0) ==> &0 < x`)); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_ADD); (ASM_REWRITE_TAC[]); (STRIP_TAC); (NEW_GOAL `t3 = &0 /\ t4 = &0`); (UNDISCH_TAC `&0 <= t3` THEN UNDISCH_TAC `&0 <= t4` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `(x - u0) dot (u1 - u0:real^3) > dist (x,u0) * dist (u1,u0) * d`); (REWRITE_WITH `x = t1 % u0 + t2 % u1:real^3`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (MATCH_MP_TAC (REAL_ARITH `a <= &0 /\ &0 <= b ==> ~(a > b)`)); (STRIP_TAC); (REWRITE_WITH `(t1 % u0 + t2 % u1) - u0 = (t1 % u0 + t2 % u1) - (t1 + t2 + t3 + t4) % u0:real^3`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_TAC[ASSUME `t3 = &0`; ASSUME `t4 = &0`; VECTOR_ARITH `(t1 % u0 + t2 % u1) - (t1 + t2 + &0 + &0) % u0 = t2 % (u1 - u0)`; DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= (--a) * b`]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DOT_POS_LE]); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[DIST_POS_LE]); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c/\ c < &1`); (REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (ABBREV_TAC `y = t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % m:real^3`); (NEW_GOAL `(g:real^3->real) y <= g xx`); (FIRST_ASSUM MATCH_MP_TAC); (REWRITE_TAC[CONVEX_HULL_2; IN; IN_ELIM_THM]); (EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (MATCH_MP_TAC REAL_LE_DIV); (ASM_SIMP_TAC[REAL_LE_ADD]); (ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_DIV]); (REWRITE_TAC[REAL_ARITH `a / x + b / x = (a + b) / x`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (ABBREV_TAC `w = t1 / (t1 + t3 + t4) % u0 + t3 / (t1 + t3 + t4) % u2 + t4 / (t1 + t3 + t4) % m:real^3`); (NEW_GOAL `(g:real^3->real) y = g w`); (EXPAND_TAC "g"); (REWRITE_WITH `y:real^3 - u0 = &1 / (t3 + t4) % (t3 % u2 + t4 % m - (t3 + t4) % u0)`); (EXPAND_TAC "y"); (REWRITE_TAC[VECTOR_ARITH `(t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3) - u0 = &1 / (t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0) <=> (t3 + t4) / (t3 + t4) % u0 = u0`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_MUL; DOT_LMUL]); (REWRITE_WITH `w:real^3 - u0 = &1 / (t1 + t3 + t4) % (t3 % u2 + t4 % m - (t3 + t4) % u0)`); (EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `(t1 / (t1 + t3 + t4) % u0 + t3 / (t1 + t3 + t4) % u2 + t4 / (t1 + t3 + t4) % u3) - u0 = &1 / (t1 + t3 + t4) % (t3 % u2 + t4 % u3 - (t3 + t4) % u0) <=> (t1 + t3 + t4) / (t1 + t3 + t4) % u0 = u0`]); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_MUL; DOT_LMUL]); (REWRITE_WITH `abs (&1 / (t3 + t4)) = &1 / (t3 + t4)`); (REWRITE_TAC[REAL_ABS_REFL]); (ASM_SIMP_TAC[REAL_LE_DIV;REAL_LE_ADD; REAL_ARITH `&0 <= &1`]); (REWRITE_WITH `abs (&1 / (t1 + t3 + t4)) = &1 / (t1 + t3 + t4)`); (REWRITE_TAC[REAL_ABS_REFL]); (MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_ARITH `&0 <= &1`]); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `(a * x) / ((a * y) * z) = (a * x) / (a * (y * z))`]); (ABBREV_TAC `a1 = norm (t3 % u2 + t4 % m - (t3 + t4) % u0) * norm (u1 - u0:real^3)`); (NEW_GOAL `~(a1 = &0)`); (EXPAND_TAC "a1" THEN ASM_REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0; VECTOR_ARITH `(a - b = vec 0 <=> a = b)/\(a + b-c = vec 0 <=> a + b = c)`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `m:real^3`); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 + t3 / (t3 + t4) + t4 / (t3 + t4) = (t3 + t4) / (t3 + t4)`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `&0 % u1 + t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3 = (&1 / (t3 + t4)) % (t3 % u2 + t4 % u3)`]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (NEW_GOAL `~(&1 / (t3 + t4) = &0)`); (NEW_GOAL `&0 < &1 / (t3 + t4)`); (MATCH_MP_TAC REAL_LT_DIV); (ASM_REWRITE_TAC[REAL_ARITH `&0 < &1`]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_WITH `(&1 / (t3 + t4) * ((t3 % u2 + t4 % m - (t3 + t4) % u0) dot (u1 - u0))) / (&1 / (t3 + t4) * a1) = ((t3 % u2 + t4 % m - (t3 + t4) % u0) dot (u1 - u0:real^3)) / a1`); (UP_ASM_TAC THEN UP_ASM_TAC THEN MESON_TAC[Trigonometry1.REAL_DIV_MUL2]); (NEW_GOAL `~(&1 / (t1 + t3 + t4) = &0)`); (NEW_GOAL `&0 < &1 / (t1 + t3 + t4)`); (MATCH_MP_TAC REAL_LT_DIV); (ASM_REWRITE_TAC[REAL_ARITH `&0 < &1`]); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_WITH `(&1 / (t1 + t3 + t4) * ((t3 % u2 + t4 % m - (t3 + t4) % u0) dot (u1 - u0))) / (&1 / (t1 + t3 + t4) * a1) = ((t3 % u2 + t4 % m - (t3 + t4) % u0) dot (u1 - u0:real^3)) / a1`); (UP_ASM_TAC THEN UNDISCH_TAC `~(a1 = &0)` THEN MESON_TAC[Trigonometry1.REAL_DIV_MUL2]); (NEW_GOAL `(g:real^3->real) x <= g w`); (EXPAND_TAC "g"); (REWRITE_WITH `((x - u0) dot (u1 - u0:real^3)) / (norm (x - u0) * norm (u1 - u0)) <= ((w - u0) dot (u1 - u0)) / (norm (w - u0) * norm (u1 - u0)) <=> ((x - u0) dot (u1 - u0)) * (norm (w - u0) * norm (u1 - u0)) <= ((w - u0) dot (u1 - u0)) * (norm (x - u0) * norm (u1 - u0))`); (MATCH_MP_TAC RAT_LEMMA4); (STRIP_TAC); (MATCH_MP_TAC REAL_LT_MUL); (ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_ARITH `x - b = vec 0 <=> x = b`]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{u0, u1, u2, u3} = {u1, u0, u2, u3}`]); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `(t2 + t3 + t4) / t2` THEN EXISTS_TAC `(--t3) / t2` THEN EXISTS_TAC `(--t4) / t2`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `(t2 + t3 + t4) / t2 + --t3 / t2 + --t4 / t2 = t2 / t2`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_WITH `(t2 + t3 + t4) = &1 - t1`); (UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (NEW_GOAL `u0 - t1 % u0 - t3 % u2 - t4 % m:real^3 = t2 % u1`); (UP_ASM_TAC THEN VECTOR_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `(&1 - t1) / t2 % u0 + --t3 / t2 % u2 + --t4 / t2 % u3 = (&1 / t2) % (u0 - t1 % u0 - t3 % u2 - t4 % u3)`]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `t2 / t2 = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (MATCH_MP_TAC REAL_LT_MUL); (ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_ARITH `x - b = vec 0 <=> x = b`]); (EXPAND_TAC "w" THEN STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[coplanar]); (EXISTS_TAC `u1:real^3` THEN EXISTS_TAC `u2:real^3` THEN EXISTS_TAC `m:real^3`); (MATCH_MP_TAC (SET_RULE `u0 IN S /\ b SUBSET S ==> (u0 INSERT b) SUBSET S`)); (REWRITE_TAC[SET_SUBSET_AFFINE_HULL]); (REWRITE_TAC[AFFINE_HULL_3; IN; IN_ELIM_THM]); (EXISTS_TAC `&0` THEN EXISTS_TAC `t3 / (t3 + t4)` THEN EXISTS_TAC `t4 / (t3 + t4)`); (REPEAT STRIP_TAC); (REWRITE_TAC[REAL_ARITH `&0 + t3 / (t3 + t4) + t4 / (t3 + t4) = (t3 + t4) / (t3 + t4)`]); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[VECTOR_ARITH `&0 % u1 + t3 / (t3 + t4) % u2 + t4 / (t3 + t4) % u3 = (&1 / (t3 + t4)) % (t3 % u2 + t4 % u3)`]); (UP_ASM_TAC THEN REWRITE_TAC[VECTOR_ARITH `t1 / x % u0 + t3 / x % u2 + t4 / x % u3 = (&1 / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `&1 / (t1 + t3 + t4) % (t1 % u0 + t3 % u2 + t4 % m) = u0 <=> t1 % u0 + t3 % u2 + t4 % m = (t1 + t3 + t4) % u0:real^3`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Collect_geom.CHANGE_SIDE); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 +t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `t1 % u0 + t3 % u2 + t4 % u3 = (t1 + t3 + t4) % u0 <=> t3 % u2 + t4 % u3 = (t3 + t4) % u0`]); (STRIP_TAC THEN ASM_REWRITE_TAC[]); (REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `&1 / a * a = a / a`]); (REWRITE_WITH `(t3 + t4) / (t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `&0 < t3 + t4` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (SET_TAC[]); (REWRITE_WITH `x = t2 % u1 + (t1 + t3 + t4) % w:real^3`); (ASM_REWRITE_TAC[] THEN EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `x % (t1 /x % u0 + t3 / x % u2 + t4 /x % u3) = (x / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (ABBREV_TAC `t = t1 + t3 + t4`); (REWRITE_WITH `(t2 % u1 + t % w) - u0:real^3 = (t2 % u1 + t % w) - (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_WITH `t1 + t2 + t3 + t4 = t2 + t:real`); (EXPAND_TAC "t" THEN REAL_ARITH_TAC); (REWRITE_TAC[VECTOR_ARITH `(t2 % u1 + t % w) - (t2 + t) % u0 = t2 % (u1 - u0) + t % (w - u0)`]); (ABBREV_TAC `x1 = u1 - u0:real^3`); (ABBREV_TAC `x2 = w - u0:real^3`); (REWRITE_WITH `(t2 % x1 + t % x2) dot x1 = t2 * norm x1 pow 2 + t * x2 dot (x1:real^3)`); (REWRITE_TAC[NORM_POW_2]); (VECTOR_ARITH_TAC); (NEW_GOAL `t2 * norm x1 pow 2 * norm x2 * norm x1 <= t2 * (x2 dot x1) * norm x1 * norm (x1:real^3)`); (REWRITE_TAC[REAL_POW_2; REAL_ARITH `t2 * (x1 * x1) * x2 * x1 <= t2 * x3 * x1 * x1 <=> &0 <= (x1 pow 2) * (--t2) * (x2 * x1 - x3)`]); (MATCH_MP_TAC REAL_LE_MUL); (ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE]); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[REAL_ARITH `&0 <= a - b <=> b <= a`]); (STRIP_TAC); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_TAC[NORM_CAUCHY_SCHWARZ]); (NEW_GOAL `t2 * (x2 dot x1) * norm x1 * norm x1 + t * (x2 dot x1) * norm x2 * norm x1 <= (x2 dot x1) * norm (t2 % x1 + t % x2) * norm (x1:real^3)`); (REWRITE_TAC[REAL_ARITH `t2 * x3 * x1 * x1 + t * x3 * x2 * x1 <= x3 * x4 * x1 <=> &0 <= (x1 * x3) * (x4 - t2 * x1 - t * x2)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (MATCH_MP_TAC REAL_LE_MUL); (REWRITE_TAC[NORM_POS_LE]); (ASM_CASES_TAC `x2 dot (x1:real^3) < &0`); (NEW_GOAL `F`); (NEW_GOAL `(g:real^3->real) x <= &0`); (EXPAND_TAC "g"); (REWRITE_TAC[REAL_ARITH `a / b <= &0 <=> &0 <= (--a) / b`]); (MATCH_MP_TAC REAL_LE_DIV); (SIMP_TAC[NORM_POS_LE; REAL_LE_MUL]); (REWRITE_WITH `x = t2 % u1 + (t1 + t3 + t4) % w:real^3`); (ASM_REWRITE_TAC[] THEN EXPAND_TAC "w"); (REWRITE_TAC[VECTOR_ARITH `x % (t1 /x % u0 + t3 / x % u2 + t4 /x % u3) = (x / x) % (t1 % u0 + t3 % u2 + t4 % u3)`]); (EXPAND_TAC "t"); (REWRITE_WITH `(t1 + t3 + t4) / (t1 + t3 + t4) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (VECTOR_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&0 <= --a <=> a <= &0`]); (REWRITE_WITH `(t2 % u1 + (t1 + t3 + t4) % w) - u0:real^3 = (t2 % u1 + (t1 + t3 + t4) % w) - (t1 + t2 + t3 + t4) % u0`); (ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC); (REWRITE_WITH `(t2 % u1 + (t1 + t3 + t4) % w) - (t1 + t2 + t3 + t4) % u0 = t2 % x1 + t % x2:real^3`); (EXPAND_TAC "x1" THEN EXPAND_TAC "x2" THEN EXPAND_TAC "t" THEN VECTOR_ARITH_TAC); (NEW_GOAL `t % x2 dot (x1:real^3) <= &0`); (REWRITE_TAC[DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= a * (--b)`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `t2 % x1 dot (x1:real^3) <= &0`); (REWRITE_TAC[DOT_LMUL; REAL_ARITH `a * b <= &0 <=> &0 <= (--a) * b`]); (MATCH_MP_TAC REAL_LE_MUL); (STRIP_TAC); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[DOT_POS_LE]); (REWRITE_TAC[DOT_LADD]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `d < (g:real^3->real) x`); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1`); (REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC [REAL_ARITH `&0 <= a - b * d - c <=> c <= a + (--b) * d`]); (REWRITE_WITH `t * norm (x2:real^3) = abs t * norm x2`); (AP_THM_TAC THEN AP_TERM_TAC); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[REAL_ABS_REFL]); (EXPAND_TAC "t" THEN UNDISCH_TAC `t2 < &0` THEN UNDISCH_TAC `t1 + t2 + t3 + t4 = &1` THEN REAL_ARITH_TAC); (REWRITE_WITH `(--t2) * norm (x1:real^3) = abs (--t2) * norm x1`); (AP_THM_TAC THEN AP_TERM_TAC); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[REAL_ABS_REFL]); (UNDISCH_TAC `t2 < &0` THEN REAL_ARITH_TAC); (REWRITE_TAC[GSYM NORM_MUL]); (REWRITE_WITH `norm (t % x2:real^3) = norm ((t2 % x1 + t % x2) + (--t2 % x1))`); (AP_TERM_TAC THEN VECTOR_ARITH_TAC); (REWRITE_TAC[NORM_TRIANGLE]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `(g:real^3->real) y <= g xx`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `(g:real^3->real) xx <= d1`); (FIRST_ASSUM MATCH_MP_TAC); (EXPAND_TAC "P3"); (EXPAND_TAC "g" THEN EXPAND_TAC "f3"); (REWRITE_TAC[IN_ELIM_THM; IN]); (EXISTS_TAC `vl:(real^3)list`); (REWRITE_TAC[ASSUME `barV V 3 vl`; ASSUME `vl = [u0;u1;u2;u3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_1]); (STRIP_TAC); (SIMP_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell 3 V vl = mcell k V vl`); (ASM_SIMP_TAC[]); (REWRITE_TAC[GSYM (ASSUME `X = mcell k V vl`)]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X INTER (C:real^3->bool)`); (STRIP_TAC); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC (SET_RULE `D SUBSET C ==> X INTER D SUBSET X INTER C`)); (EXPAND_TAC "D" THEN EXPAND_TAC "C"); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A INTER C SUBSET B INTER D`)); (STRIP_TAC); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN REAL_ARITH_TAC); (EXPAND_TAC "xx"); (SIMP_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN EXPAND_TAC "d"); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `(X:real^3->bool)`); (STRIP_TAC); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (ABBREV_TAC `m = mxi V vl`); (NEW_GOAL `~coplanar {u0, u1, u2, m:real^3}`); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (STRIP_TAC); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; set_of_list]); (COND_CASES_TAC); (REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, m:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (ASM_REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (SET_TAC[]); (ASM_CASES_TAC `azim u0 u1 u2 (m:real^3) < pi`); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 u2 m)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {u2, m} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_WITH `aff_ge {u0, u1:real^3} {u2, m} = aff_gt {u0, u1} {u2, m} UNION UNIONS {aff_ge {u0, u1} ({u2, m} DELETE a) | a | a IN {u2, m}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({u2, m} DELETE a) | a | a IN {u2, m}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {u2} UNION aff_ge {u0, u1:real^3} {m}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u2}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u2:real^3} = {u0,u1} UNION {u2}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, m}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,m:real^3} = {u0,u1} UNION {m}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B /\ C SUBSET D ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (REWRITE_WITH `{u0, u1, u2, m} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (* begin the computation *) (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 u2 m) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 u2 m / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, u2} /\ ~collinear {u0, u1, m}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 u2 m = dihV u0 u1 u2 m`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(3, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `3 <= 4`] THEN ASM_REWRITE_TAC[]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] [u0; u1; u2; u3] /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 3 /\ mcell k' V ul = mcell 3 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell k' V ul INTER mcell 3 V vl = X`); (REWRITE_WITH `mcell 3 V vl = X`); (ASM_SIMP_TAC[]); (SET_TAC[ASSUME `X = mcell k' V ul`]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `~NULLSET X` THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu3]); (REWRITE_WITH `dihV (EL 0 ul) (EL 1 ul) (EL 2 ul) (mxi V ul) = dihV u0 u1 u2 (m:real^3)`); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `{EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = {u0, u1,u2,m:real^3}`); (REWRITE_WITH ` {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = {u0, u1,u2,m:real^3} <=> convex hull {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = convex hull {u0, u1,u2,m:real^3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.CONVEX_HULL_EQ_EQ_SET_EQ); (REPEAT STRIP_TAC); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, mxi V [v0; v1; v2; v3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (UNDISCH_TAC `affine_dependent {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul}`); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, mxi V [u0; u1; u2; u3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (REWRITE_WITH `convex hull {u0, u1, u2, m:real^3} = X`); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; set_of_list]); (COND_CASES_TAC); (REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; set_of_list]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_TAC[set_of_list; ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `1 = SUC 0`]); (NEW_GOAL `mxi V ul = m`); (EXPAND_TAC "m"); (MATCH_MP_TAC MCELL_ID_MXI); (EXISTS_TAC `k':num` THEN EXISTS_TAC `k:num`); (ASM_REWRITE_TAC[SET_RULE `3 IN {2, 3}`]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `HD (ul) = (HD (truncate_simplex 1 ul)):real^3`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (ASM_REWRITE_TAC[]); (STRIP_TAC); (NEW_GOAL `EL 2 ul = u2:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,u2,m:real^3}` THEN REWRITE_TAC[ GSYM (ASSUME `{u0, u1, EL 2 ul, m} = {u0, u1, u2, m:real^3}`); ASSUME `{u0, u1, EL 2 ul, m} = {u0, u1, m:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN MESON_TAC[]); (UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d /\ --(&1) < &0 ==> max d (--(&1)) = d`)); (REWRITE_TAC[REAL_NEG_LT0]); (STRIP_TAC); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UNDISCH_TAC `k' = 3 /\ mcell k' V ul = mcell 3 V vl` THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (ASM_CASES_TAC `azim u0 u1 m (u2:real^3) < pi`); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (STRIP_TAC); (REWRITE_WITH `vol (L INTER D) = vol (D INTER wedge u0 u1 m u2)`); (ASM_SIMP_TAC[WEDGE_LUNE]); (REWRITE_WITH `L INTER conic_cap (u0:real^3) u1 r d = conic_cap u0 u1 r d INTER L`); (SET_TAC[]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `conic_cap (u0:real^3) u1 r d INTER aff_gt {u0, u1} {m, u2} DIFF conic_cap u0 u1 r d INTER L = {}`); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A DIFF C INTER B = {}`)); (REWRITE_TAC[AFF_GT_SUBSET_AFF_GE]); (REWRITE_TAC[SET_RULE `A UNION {} = A`]); (EXPAND_TAC "L"); (REWRITE_TAC[SET_RULE `{a,b} = {b, a}`]); (REWRITE_WITH `aff_ge {u0, u1:real^3} {m, u2} = aff_gt {u0, u1} {m, u2} UNION UNIONS {aff_ge {u0, u1} ({m, u2} DELETE a) | a | a IN {m, u2}}`); (MATCH_MP_TAC AFF_GE_AFF_GT_DECOMP); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, u2:real^3}`); (REWRITE_WITH `{u0, u1, m, u2} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, u2:real^3}`); (REWRITE_WITH `{u0, u1, m, u2} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {aff_ge {u0, u1:real^3} ({m, u2} DELETE a) | a | a IN {m, u2}}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {u0, u1:real^3} {u2} UNION aff_ge {u0, u1:real^3} {m}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNION); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, u2}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,u2:real^3} = {u0,u1} UNION {u2}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1:real^3, m}`); (STRIP_TAC); (REWRITE_TAC[NEGLIGIBLE_AFFINE_HULL_3]); (REWRITE_WITH `{u0,u1,m:real^3} = {u0,u1} UNION {m}`); (SET_TAC[]); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL]); (REWRITE_TAC[SET_RULE `UNIONS {aff_ge {u0, u1} ({m, s3} DELETE a) | a | a IN {m, s3}} = aff_ge {u0, u1} ({m, s3} DELETE s3) UNION aff_ge {u0, u1} ({m, s3} DELETE m)`]); (MATCH_MP_TAC (SET_RULE `A SUBSET D /\ C SUBSET B ==> A UNION C SUBSET B UNION D`)); (STRIP_TAC); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `m IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, u2:real^3}`); (REWRITE_WITH `{u0, u1, m, u2} = {u0, u1, u2:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (MATCH_MP_TAC AFF_GE_MONO_RIGHT); (STRIP_TAC); (SET_TAC[]); (REWRITE_TAC[DISJOINT]); (ASM_CASES_TAC `u2 IN {u0, u1:real^3}`); (NEW_GOAL `F`); (UNDISCH_TAC `~coplanar {u0, u1, m, u2:real^3}`); (REWRITE_WITH `{u0, u1, m, u2} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[COPLANAR_3]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN SET_TAC[]); (SET_TAC[]); (REWRITE_TAC[ASSUME `D = conic_cap (u0:real^3) u1 r d`]); (REWRITE_WITH `vol (conic_cap u0 u1 r d INTER wedge u0 u1 m u2) = (if &1 < d \/ r < &0 then &0 else azim u0 u1 m u2 / &3 * (&1 - max d (-- &1)) * r pow 3)`); (NEW_GOAL `~collinear {u0:real^3, u1, u2} /\ ~collinear {u0, u1, m}`); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ASM_REWRITE_TAC[]); (ASM_SIMP_TAC[VOLUME_CONIC_CAP_WEDGE]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `&0 < r` THEN UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_WITH `azim (u0:real^3) u1 m u2 = dihV u0 u1 m u2`); (MATCH_MP_TAC AZIM_DIHV_SAME); (ASM_REWRITE_TAC[]); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[dihX]); (COND_CASES_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET (X INTER D)`); (REWRITE_TAC[]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `X:real^3->bool`); (ASM_REWRITE_TAC[] THEN SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (LET_TAC); (UP_ASM_TAC THEN REWRITE_TAC[cell_params_d]); (ABBREV_TAC `P = (\(k, ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul /\ initial_sublist [u0; u1] ul)`); (STRIP_TAC); (NEW_GOAL `(P:num#(real^3)list->bool) ((@) P)`); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `(3, vl:(real^3)list)`); (EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN; ARITH_RULE `3 <= 4`] THEN ASM_REWRITE_TAC[]); (REWRITE_WITH `initial_sublist [u0;u1:real^3] [u0; u1; u2; u3] /\ LENGTH [u0;u1] = 1 + 1`); (REWRITE_TAC[GSYM Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "P" THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC); (NEW_GOAL `k' = 3 /\ mcell k' V ul = mcell 3 V vl`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[]); (REWRITE_TAC[GSYM (ASSUME `vl = [u0; u1; u2; u3:real^3]`)]); (REWRITE_WITH `mcell k' V ul INTER mcell 3 V vl = X`); (REWRITE_WITH `mcell 3 V vl = X`); (ASM_SIMP_TAC[]); (SET_TAC[ASSUME `X = mcell k' V ul`]); (REPEAT STRIP_TAC); (UNDISCH_TAC `k' <= 4` THEN REWRITE_TAC[ARITH_RULE `a <= 4 <=> a = 0 \/a = 1 \/ a = 2 \/ a = 3 \/ a = 4`] THEN SET_TAC[]); (SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `~NULLSET X` THEN MESON_TAC[]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (COND_CASES_TAC); (REWRITE_TAC[dihu3]); (REWRITE_WITH `dihV (EL 0 ul) (EL 1 ul) (EL 2 ul) (mxi V ul) = dihV u0 u1 u2 (m:real^3)`); (NEW_GOAL `truncate_simplex 1 ul = [u0;u1:real^3] /\ 1 + 1 <= LENGTH ul`); (REWRITE_TAC[Packing3.TRUNCATE_SIMPLEX_INITIAL_SUBLIST]); (ASM_REWRITE_TAC[LENGTH] THEN ARITH_TAC); (NEW_GOAL `EL 0 (ul:(real^3)list) = EL 0 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `EL 1 (ul:(real^3)list) = EL 1 (truncate_simplex 1 ul)`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.EL_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (NEW_GOAL `{EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = {u0, u1,u2,m:real^3}`); (REWRITE_WITH ` {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = {u0, u1,u2,m:real^3} <=> convex hull {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul} = convex hull {u0, u1,u2,m:real^3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.CONVEX_HULL_EQ_EQ_SET_EQ); (REPEAT STRIP_TAC); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, mxi V [v0; v1; v2; v3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (UNDISCH_TAC `affine_dependent {EL 0 ul, EL 1 ul, EL 2 ul, mxi V ul}`); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {u0, u1, u2, mxi V [u0; u1; u2; u3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (MATCH_MP_TAC Rogers.AFF_DIM_LE_2_IMP_COPLANAR); (MATCH_MP_TAC Njiutiu.AFF_DEPENDENT_AFF_DIM_4); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (REWRITE_WITH `convex hull {u0, u1, u2, m:real^3} = X`); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; set_of_list]); (COND_CASES_TAC); (REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_WITH `mxi V [u0;u1;u2;u3] = m`); (EXPAND_TAC "m"); (REWRITE_TAC[ASSUME `vl = [u0; u1; u2; u3:real^3]`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (ASM_SIMP_TAC[mcell3; MCELL_EXPLICIT; set_of_list]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (COND_CASES_TAC); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2; v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_TAC[set_of_list; ASSUME `ul = [v0; v1; v2; v3:real^3]`; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (REWRITE_TAC[EL; HD; TL; ARITH_RULE `3 = SUC 2 /\ 2 = SUC 1 /\ 1 = SUC 0`]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET X`); (REWRITE_TAC[]); (SIMP_TAC[MCELL_EXPLICIT; mcell3; ASSUME `X = mcell k' V ul`; ASSUME `k' = 3`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN ASM_REWRITE_TAC[EL; HD; TL; ARITH_RULE `1 = SUC 0`]); (NEW_GOAL `mxi V ul = m`); (EXPAND_TAC "m"); (MATCH_MP_TAC MCELL_ID_MXI); (EXISTS_TAC `k':num` THEN EXISTS_TAC `k:num`); (ASM_REWRITE_TAC[SET_RULE `3 IN {2, 3}`]); (REWRITE_WITH `mcell 3 V [u0; u1; u2; u3] = X`); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[HD]); (REWRITE_WITH `HD (ul) = (HD (truncate_simplex 1 ul)):real^3`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC Packing3.HD_TRUNCATE_SIMPLEX); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (ARITH_TAC); (ASM_REWRITE_TAC[HD]); (ASM_REWRITE_TAC[]); (STRIP_TAC); (NEW_GOAL `EL 2 ul = u2:real^3`); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `{u0, u1, EL 2 ul, m} = {u0, u1, m:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UNDISCH_TAC `~coplanar {u0,u1,m,u2:real^3}`); (REWRITE_TAC[]); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b,d,c}`]); (REWRITE_TAC[GSYM (ASSUME `{u0, u1, EL 2 ul, m} = {u0, u1, u2, m:real^3}`); ASSUME `{u0, u1, EL 2 ul, m} = {u0, u1, m:real^3}`; COPLANAR_3]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[DIHV_SYM_2]); (REWRITE_TAC[REAL_ARITH `a / b * c * d pow 3 = (c/ b * d pow 3) * a`]); (REWRITE_TAC[REAL_ARITH `a * b / (&2 * c) = (a / (&2 * c)) * b`]); (AP_THM_TAC THEN AP_TERM_TAC); (REWRITE_WITH `measurable (conic_cap u0 u1 r d) /\ vol (conic_cap u0 u1 r d) = (if u1 = u0 \/ &1 <= d \/ r < &0 then &0 else &2 / &3 * pi * (&1 - d) * r pow 3)`); (MATCH_MP_TAC VOLUME_CONIC_CAP); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN MESON_TAC[]); (UNDISCH_TAC `d < &1` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[ARITH_RULE `SUC 0 = 1`]); (REWRITE_WITH `max d (--(&1)) = d`); (MATCH_MP_TAC (REAL_ARITH `&0 < d /\ --(&1) < &0 ==> max d (--(&1)) = d`)); (REWRITE_TAC[REAL_NEG_LT0]); (STRIP_TAC); (EXPAND_TAC "d"); (UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REAL_ARITH_TAC); (REWRITE_WITH ` (&2 / &3 * pi * (&1 - d) * r pow 3) / (&2 * pi) = (&1 - d) / &3 * r pow 3 * ((&2 * pi) / (&2 * pi))`); (REAL_ARITH_TAC); (REWRITE_WITH `(&2 * pi) / (&2 * pi) = &1`); (MATCH_MP_TAC REAL_DIV_REFL); (REWRITE_TAC[REAL_ENTIRE; PI_NZ; REAL_ARITH `~(&2 = &0)`]); (REAL_ARITH_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UNDISCH_TAC `k' = 3 /\ mcell k' V ul = mcell 3 V vl` THEN MESON_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (NEW_GOAL `F`); (NEW_GOAL `azim (u0:real^3) u1 m u2 = (if azim u0 u1 u2 m = &0 then &0 else &2 * pi - azim u0 u1 u2 m)`); (MATCH_MP_TAC AZIM_COMPL); (STRIP_TAC); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `m:real^3`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC NOT_COPLANAR_NOT_COLLINEAR); (EXISTS_TAC `u2:real^3`); (ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {a,b, d, c}`]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN COND_CASES_TAC); (NEW_GOAL `F`); (NEW_GOAL `(&0 < pi)`); (REWRITE_TAC[PI_POS]); (UNDISCH_TAC `~(azim (u0:real^3) u1 u2 m < pi)`); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (STRIP_TAC); (NEW_GOAL `azim (u0:real^3) u1 u2 m = pi`); (UP_ASM_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UNDISCH_TAC `~coplanar {u0, u1, u2, m:real^3}`); (REWRITE_TAC[] THEN MATCH_MP_TAC AZIM_EQ_0_PI_IMP_COPLANAR); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================================================= *) (* ========================================================================= *) (ABBREV_TAC `s = {X | mcell_set V X /\ edgeX V X e}`); (NEW_GOAL `sum s (\t. vol (t INTER D)) = vol (D)`); (ABBREV_TAC `f = (\t:real^3->bool. t INTER D)`); (REWRITE_WITH `(\t. vol (t INTER D)) = (\x:real^3->bool. vol (f x))`); (EXPAND_TAC "f"); (REWRITE_TAC[]); (REWRITE_WITH `sum s (\x:real^3->bool. vol (f x)) = vol (UNIONS (IMAGE f s))`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNIONS_IMAGE); (REPEAT STRIP_TAC); (EXPAND_TAC "s"); (MATCH_MP_TAC FINITE_EDGE_X2); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3`); (ASM_REWRITE_TAC[]); (EXPAND_TAC "f"); (MATCH_MP_TAC MEASURABLE_INTER); (STRIP_TAC); (UP_ASM_TAC THEN EXPAND_TAC "s"); (REWRITE_TAC[mcell_set; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_SIMP_TAC[MEASURABLE_MCELL]); (ASM_REWRITE_TAC[MEASURABLE_CONIC_CAP]); (EXPAND_TAC "f"); (UNDISCH_TAC `(x:real^3->bool) IN s` THEN UNDISCH_TAC `(y:real^3->bool) IN s` THEN EXPAND_TAC "s"); (REWRITE_TAC[mcell_set_2; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `x INTER (y:real^3->bool)`); (ASM_REWRITE_TAC[SET_RULE `(x INTER D) INTER y INTER D SUBSET x INTER y`]); (MATCH_MP_TAC (MESON[] `(~A ==> F) ==> A`)); (STRIP_TAC); (NEW_GOAL `i' = i /\ mcell i' V ul' = mcell i V ul`); (MATCH_MP_TAC Ajripqn.AJRIPQN); (ASM_REWRITE_TAC[SET_RULE `i IN {0, 1, 2, 3, 4} <=> i = 0 \/ i = 1 \/ i = 2 \/ i = 3 \/ i = 4`]); (UNDISCH_TAC `i <= 4` THEN UNDISCH_TAC `i' <= 4` THEN ARITH_TAC); (UNDISCH_TAC `~(x = y:real^3->bool)` THEN ASM_REWRITE_TAC[]); (EXPAND_TAC "s"); (EXPAND_TAC "f" THEN REWRITE_TAC[IMAGE]); (* OK here *) (MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF); (REWRITE_WITH `UNIONS {y | ?x. x IN {X | mcell_set V X /\ edgeX V X e} /\ y = x INTER D} DIFF D = {}`); (REWRITE_TAC[SET_RULE `A DIFF B = {} <=> A SUBSET B`]); (REWRITE_TAC[UNIONS_SUBSET; IN; IN_ELIM_THM]); (SET_TAC[]); (REWRITE_TAC[SET_RULE `{} UNION A = A`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `UNIONS {y | ?x. x IN {X | mcell_set V X /\ NULLSET (X INTER D) /\ ~(X INTER D = {})} /\ y = x INTER D}`); (STRIP_TAC); (MATCH_MP_TAC NEGLIGIBLE_UNIONS); (STRIP_TAC); (REWRITE_WITH `{y | ?x. x IN {X | mcell_set V X /\ NULLSET (X INTER D) /\ ~(X INTER D = {})} /\ y = x INTER D} = {y | ?x. x IN {X | mcell_set V X /\ NULLSET (X INTER D) /\ ~(X INTER D = {})} /\ y = f x }`); (EXPAND_TAC "f" THEN REWRITE_TAC[]); (MATCH_MP_TAC FINITE_IMAGE_EXPAND); (* ========================================================================= *) (* ========================================================================= *) (* ========================================================================= *) (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{X | X SUBSET ball (u0, &10) /\ mcell_set V X}`); (STRIP_TAC); (ASM_SIMP_TAC[FINITE_MCELL_SET_LEMMA_2]); (REWRITE_TAC[SUBSET; IN_BALL; IN; IN_ELIM_THM; mcell_set] THEN REPEAT STRIP_TAC); (NEW_GOAL `?v1:real^3. v1 IN x /\ v1 IN D`); (REWRITE_TAC[GSYM IN_INTER]); (UNDISCH_TAC `~(x:real^3->bool INTER D = {})` THEN SET_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `dist (u0, x') <= dist (u0, v1:real^3) + dist (v1, x')`); (NORM_ARITH_TAC); (NEW_GOAL `dist (u0, v1:real^3) < &1`); (REWRITE_TAC[GSYM IN_BALL]); (NEW_GOAL `D SUBSET ball (u0:real^3, &1)`); (EXPAND_TAC "D"); (NEW_GOAL `ball (u0, r) SUBSET ball (u0:real^3, &1)`); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r" THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN UNDISCH_TAC `v1:real^3 IN D` THEN SET_TAC[]); (NEW_GOAL `dist (v1,x':real^3) < &8`); (REWRITE_TAC[GSYM IN_BALL]); (NEW_GOAL `x SUBSET ball (v1:real^3, &8)`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC MCELL_SUBSET_BALL8); (REWRITE_TAC[GSYM (ASSUME `x = mcell i V ul`)] THEN ASM_REWRITE_TAC[]); (UNDISCH_TAC `(x:real^3->bool) x'` THEN UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (EXISTS_TAC `i:num` THEN EXISTS_TAC `ul:(real^3)list`); (ASM_REWRITE_TAC[]); (* ========================================================================= *) (REWRITE_TAC[IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (REWRITE_TAC[ASSUME `t:real^3->bool = x INTER D`]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[SUBSET; IN_UNIONS]); (REPEAT STRIP_TAC); (NEW_GOAL `?v:real^3. v IN V /\ x IN voronoi_closed V v`); (ASM_SIMP_TAC[TIWWFYQ]); (UP_ASM_TAC THEN STRIP_TAC); (UP_ASM_TAC THEN REWRITE_WITH `x IN voronoi_closed V v <=> (?vl. vl IN barV V 3 /\ x IN rogers V vl /\ truncate_simplex 0 vl = [v])`); (ASM_SIMP_TAC[GLTVHUM]); (REWRITE_TAC[IN] THEN STRIP_TAC); (NEW_GOAL `?i. i <= 4 /\ x IN mcell i V vl`); (ASM_SIMP_TAC[IN;SLTSTLO1]); (UP_ASM_TAC THEN STRIP_TAC); (ABBREV_TAC `X = mcell i V vl`); (NEW_GOAL `~NULLSET (X INTER D) ==> F`); (STRIP_TAC); (NEW_GOAL `?k ul. 2 <= k /\ barV V 3 ul /\ X = mcell k V ul /\ truncate_simplex 1 ul = [u0; u1]`); (FIRST_ASSUM MATCH_MP_TAC); (STRIP_TAC); (REWRITE_TAC[mcell_set; IN_ELIM_THM; IN]); (EXISTS_TAC `i:num` THEN EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (MP_TAC (ASSUME `x IN D DIFF UNIONS {y | ?x. x IN {X | mcell_set V X /\ edgeX V X e} /\ y = x INTER D}`)); (REWRITE_TAC[IN_DIFF; MESON[] `~(A /\ ~B) <=> ~A \/ B`]); (DISJ2_TAC); (REWRITE_TAC[IN_UNIONS; IN; IN_ELIM_THM]); (EXISTS_TAC `X INTER (D:real^3->bool)`); (STRIP_TAC); (EXISTS_TAC `(X:real^3->bool)`); (REWRITE_TAC[mcell_set; IN; IN_ELIM_THM] THEN STRIP_TAC); (EXISTS_TAC `i:num` THEN EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (REWRITE_TAC[edgeX; IN_ELIM_THM]); (EXISTS_TAC `u0:real^3` THEN EXISTS_TAC `u1:real^3`); (STRIP_TAC); (NEW_GOAL `VX V X = V INTER X`); (MATCH_MP_TAC Hdtfnfz.HDTFNFZ); (EXISTS_TAC `ul:(real^3)list` THEN EXISTS_TAC `(if k < 4 then k else 4)`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (COND_CASES_TAC); (MESON_TAC[]); (NEW_GOAL `k >= 4`); (UP_ASM_TAC THEN ARITH_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; ]); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN ASM_REWRITE_TAC[]); (MESON_TAC[NEGLIGIBLE_SUBSET; SET_RULE `A INTER B SUBSET A`]); (NEW_GOAL `(V:real^3->bool) INTER X = set_of_list (truncate_simplex ((if k < 4 then k else 4) - 1) ul)`); (REWRITE_WITH `X = mcell (if k < 4 then k else 4) V ul`); (ASM_REWRITE_TAC[]); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `k >= 4`); (UP_ASM_TAC THEN ARITH_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; ]); (MATCH_MP_TAC Lepjbdj.LEPJBDJ); (ASM_REWRITE_TAC[]); (STRIP_TAC); (UNDISCH_TAC `2 <= k` THEN ARITH_TAC); (STRIP_TAC); (UNDISCH_TAC `2 <= k` THEN ARITH_TAC); (REWRITE_WITH `mcell (if k < 4 then k else 4) V ul = X`); (ASM_REWRITE_TAC[]); (COND_CASES_TAC); (REFL_TAC); (NEW_GOAL `k >= 4`); (UP_ASM_TAC THEN ARITH_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; ARITH_RULE `4 >= 4`; ]); (STRIP_TAC); (UNDISCH_TAC `~NULLSET (X INTER D)` THEN REWRITE_TAC[ASSUME `X = {}:real^3->bool`; SET_RULE `{} INTER x = {}`; NEGLIGIBLE_EMPTY]); (ASM_REWRITE_TAC[]); (NEW_GOAL `set_of_list (truncate_simplex 1 (ul:(real^3)list)) SUBSET set_of_list (truncate_simplex ((if k < 4 then k else 4) - 1) ul)`); (MATCH_MP_TAC Rogers.TRUNCATE_SIMPLEX_SUBSET); (REWRITE_WITH `LENGTH ul = 3 + 1 /\ CARD (set_of_list (ul:(real^3)list)) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UNDISCH_TAC `2 <= k` THEN ARITH_TAC); (REWRITE_TAC[MESON[IN] `(s:real^3->bool) u <=> u IN s`]); (UP_ASM_TAC THEN REWRITE_TAC[ASSUME `truncate_simplex 1 ul = [u0; u1:real^3]`; set_of_list]); (SET_TAC[]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[MESON[IN] `(s:real^3->bool) u <=> u IN s`; IN_INTER]); (STRIP_TAC); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `x IN D DIFF UNIONS {y | ?x. x IN {X | mcell_set V X /\ edgeX V X e} /\ y = x INTER D}`); (SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[] THEN STRIP_TAC); (EXISTS_TAC `X INTER (D:real^3 ->bool)`); (STRIP_TAC); (REWRITE_TAC[IN_ELIM_THM]); (EXISTS_TAC `(X:real^3 ->bool)`); (STRIP_TAC); (STRIP_TAC); (REWRITE_TAC[mcell_set; IN; IN_ELIM_THM]); (EXISTS_TAC `i:num` THEN EXISTS_TAC `vl:(real^3)list`); (ASM_REWRITE_TAC[]); (STRIP_TAC); (ASM_REWRITE_TAC[]); (REWRITE_TAC[SET_RULE `~(a = {}) <=> (?x. x IN a)`]); (EXISTS_TAC `x:real^3`); (REWRITE_TAC[IN_INTER]); (STRIP_TAC); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `x IN D DIFF UNIONS {y | ?x. x IN {X | mcell_set V X /\ edgeX V X e} /\ y = x INTER D}`); (SET_TAC[]); (REWRITE_TAC[]); (REWRITE_TAC[MESON[IN] `(s:real^3->bool) u <=> u IN s`; IN_INTER]); (STRIP_TAC); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `x IN D DIFF UNIONS {y | ?x. x IN {X | mcell_set V X /\ edgeX V X e} /\ y = x INTER D}`); (SET_TAC[]); (* ========================================================================= *) (* ========================================================================= *) (* ========================================================================= *) (UP_ASM_TAC); (ABBREV_TAC `t ={X | mcell_set V X /\ edgeX V X e /\ ~NULLSET (X INTER D)}`); (REWRITE_WITH `sum s (\t. vol (t INTER D)) = sum t (\t. vol (t INTER D))`); (MATCH_MP_TAC SUM_SUPERSET); (EXPAND_TAC "s" THEN EXPAND_TAC "t" THEN REPEAT STRIP_TAC); (SET_TAC[]); (MATCH_MP_TAC MEASURE_EQ_0); (UP_ASM_TAC THEN UP_ASM_TAC THEN REWRITE_TAC[IN; IN_ELIM_THM] ); (MESON_TAC[]); (REWRITE_WITH `sum s (\t. dihX V t (u0,u1)) = sum t (\t. dihX V t (u0,u1))`); (MATCH_MP_TAC SUM_SUPERSET); (EXPAND_TAC "s" THEN EXPAND_TAC "t" THEN REPEAT STRIP_TAC); (SET_TAC[]); (NEW_GOAL `NULLSET (x INTER D)`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REWRITE_TAC[IN; IN_ELIM_THM] ); (MESON_TAC[]); (NEW_GOAL `mcell_set V x /\ edgeX V x e`); (UNDISCH_TAC `x IN {X | mcell_set V X /\ edgeX V X e}`); (REWRITE_TAC[IN; IN_ELIM_THM]); (UP_ASM_TAC THEN REWRITE_TAC[mcell_set_2; IN_ELIM_THM;IN] THEN STRIP_TAC); (NEW_GOAL `~NULLSET x`); (UP_ASM_TAC THEN REWRITE_TAC[edgeX; VX; IN_ELIM_THM]); (COND_CASES_TAC THEN REPEAT STRIP_TAC); (UNDISCH_TAC `{} (u:real^3)` THEN REWRITE_TAC[MESON[IN] `{} x <=> x IN {}`]); (SET_TAC[]); (NEW_GOAL `VX V x = V INTER (x:real^3->bool)`); (MATCH_MP_TAC Hdtfnfz.HDTFNFZ); (EXISTS_TAC `ul:(real^3)list` THEN EXISTS_TAC `i:num`); (ASM_REWRITE_TAC[]); (NEW_GOAL `V INTER (x:real^3->bool) = set_of_list (truncate_simplex (i - 1) ul)`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC Lepjbdj.LEPJBDJ); (ASM_REWRITE_TAC[]); (STRIP_TAC); (ASM_CASES_TAC `i = 0`); (NEW_GOAL `V INTER (x:real^3->bool) = {}`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC Lepjbdj.LEPJBDJ_0); (ASM_REWRITE_TAC[]); (NEW_GOAL `F`); (UNDISCH_TAC `edgeX V x e` THEN REWRITE_TAC[edgeX; IN_ELIM_THM]); (STRIP_TAC); (UNDISCH_TAC `VX V x u` THEN ASM_REWRITE_TAC[MESON[IN] `{} x <=> x IN {}`]); (SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN ARITH_TAC); (REWRITE_TAC[GSYM (ASSUME `x = mcell i V ul`)] THEN STRIP_TAC); (UNDISCH_TAC `~NULLSET x` THEN REWRITE_TAC[ASSUME `x:real^3->bool = {}`; NEGLIGIBLE_EMPTY]); (NEW_GOAL `(u0:real^3) IN VX V x /\ u1 IN VX V x`); (UNDISCH_TAC `edgeX V x e` THEN REWRITE_TAC[edgeX; IN_ELIM_THM; ASSUME `e = {u0, u1:real^3}`]); (STRIP_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (* ========================================================================== *) (NEW_GOAL `F`); (ASM_CASES_TAC `i <= 1`); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2 ;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `i - 1 = 0`); (UNDISCH_TAC `i <= 1` THEN ARITH_TAC); (UNDISCH_TAC `u0 IN VX V x /\ u1 IN VX V x`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_0; set_of_list]); (UNDISCH_TAC `~(u0 = u1:real^3)` THEN SET_TAC[]); (ASM_CASES_TAC `i = 3`); (NEW_GOAL `vol (x INTER D) > &0`); (ONCE_REWRITE_TAC[SET_RULE `a INTER b = b INTER a`]); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2 ;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell3; TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list; SET_RULE `{a,c,d} UNION {x} = {a,c,d,x}`]); (COND_CASES_TAC); (NEW_GOAL `i - 1 = 2`); (UNDISCH_TAC `i = 3` THEN ARITH_TAC); (UNDISCH_TAC `u0 IN VX V x /\ u1 IN VX V x`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list]); (STRIP_TAC); (NEW_GOAL `?v:real^3. {u0, u1, v} = {v0, v1, v2}`); (NEW_GOAL `?v:real^3. v IN {v0, v1, v2} DIFF {u0, u1}`); (REWRITE_TAC[SET_RULE `(?x. x IN s) <=> ~(s = {})`]); (REWRITE_WITH `{v0, v1, v2} DIFF {u0, u1:real^3} = {} <=> CARD ({v0, v1, v2} DIFF {u0, u1}) = 0`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC CARD_EQ_0); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{v0, v1, v2:real^3}`); (REWRITE_TAC[Geomdetail.FINITE6] THEN SET_TAC[]); (REWRITE_TAC[ARITH_RULE `~(a = 0) <=> 1 <= a`]); (NEW_GOAL `CARD {v0, v1, v2} = CARD ({v0, v1, v2} DIFF {u0, u1:real^3}) + CARD {u0, u1}`); (MATCH_MP_TAC Hypermap.CARD_MINUS_DIFF_TWO_SET); (ASM_REWRITE_TAC[Geomdetail.FINITE6]); (UP_ASM_TAC THEN REWRITE_WITH `CARD ({v0, v1, v2:real^3}) = 3`); (REWRITE_WITH `{v0, v1, v2:real^3} = set_of_list (truncate_simplex 2 ul)`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2; set_of_list]); (ABBREV_TAC `xl = truncate_simplex 2 (ul:(real^3)list)`); (REWRITE_WITH `LENGTH (xl:(real^3)list) = 2 + 1 /\ CARD (set_of_list xl) = 2 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN STRIP_TAC); (ASM_REWRITE_TAC[]); (EXPAND_TAC "xl" THEN MATCH_MP_TAC Packing3.TRUNCATE_SIMPLEX_BARV); (EXISTS_TAC `3` THEN ASM_REWRITE_TAC[ARITH_RULE `2 <= 3`]); (ARITH_TAC); (NEW_GOAL `CARD {u0, u1:real^3} <= 2`); (REWRITE_TAC[Geomdetail.CARD2]); (UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v:real^3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN SET_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `{v0, v1, v2, mxi V [v0; v1; v2; v3]} = {u0, u1, v, mxi V [v0; v1; v2; v3]}`); (UP_ASM_TAC THEN SET_TAC[]); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC CONIC_CAP_INTER_CONVEX_HULL_4_GT_0); (ASM_REWRITE_TAC[]); (STRIP_TAC); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (REWRITE_TAC[GSYM (ASSUME `{v0, v1, v2, mxi V [v0; v1; v2; v3]} = {u0, u1, v, mxi V [v0; v1; v2; v3]}`)] THEN STRIP_TAC); (UNDISCH_TAC `~NULLSET x`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2]); (REWRITE_TAC[SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, mxi V [v0; v1; v2; v3]}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ASM_REWRITE_TAC[]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET x`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell3; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_2]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (NEW_GOAL `vol (x INTER D) = &0`); (MATCH_MP_TAC MEASURE_EQ_0); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (* ========================================== *) (ASM_CASES_TAC `i = 4`); (NEW_GOAL `vol (x INTER D) > &0`); (ONCE_REWRITE_TAC[SET_RULE `a INTER b = b INTER a`]); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2 ;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_SIMP_TAC[MCELL_EXPLICIT; mcell4; ARITH_RULE `4 >= 4`; set_of_list]); (COND_CASES_TAC); (NEW_GOAL `i - 1 = 3`); (UNDISCH_TAC `i = 4` THEN ARITH_TAC); (UNDISCH_TAC `u0 IN VX V x /\ u1 IN VX V x`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_3; set_of_list]); (STRIP_TAC); (NEW_GOAL `?v w:real^3. {u0, u1, v, w} = {v0, v1, v2, v3}`); (NEW_GOAL `?v:real^3. v IN {v0, v1, v2, v3} DIFF {u0, u1}`); (REWRITE_TAC[SET_RULE `(?x. x IN s) <=> ~(s = {})`]); (REWRITE_WITH `{v0, v1, v2, v3} DIFF {u0, u1:real^3} = {} <=> CARD ({v0, v1, v2, v3} DIFF {u0, u1}) = 0`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC CARD_EQ_0); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{v0, v1, v2, v3:real^3}`); (REWRITE_TAC[Geomdetail.FINITE6] THEN SET_TAC[]); (REWRITE_TAC[ARITH_RULE `~(a = 0) <=> 1 <= a`]); (NEW_GOAL `CARD {v0, v1, v2, v3} = CARD ({v0, v1, v2, v3} DIFF {u0, u1:real^3}) + CARD {u0, u1}`); (MATCH_MP_TAC Hypermap.CARD_MINUS_DIFF_TWO_SET); (ASM_REWRITE_TAC[Geomdetail.FINITE6]); (UP_ASM_TAC THEN REWRITE_WITH `CARD ({v0, v1, v2, v3:real^3}) = 3 + 1`); (REWRITE_WITH `{v0, v1, v2, v3:real^3} = set_of_list ul`); (ASM_REWRITE_TAC[set_of_list]); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (NEW_GOAL `CARD {u0, u1:real^3} <= 2`); (REWRITE_TAC[Geomdetail.CARD2]); (UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (NEW_GOAL `?w:real^3. w IN {v0, v1, v2, v3} DIFF {u0, u1, v}`); (REWRITE_TAC[SET_RULE `(?x. x IN s) <=> ~(s = {})`]); (REWRITE_WITH `{v0, v1, v2, v3} DIFF {u0, u1, v:real^3} = {} <=> CARD ({v0, v1, v2, v3} DIFF {u0, u1, v}) = 0`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC CARD_EQ_0); (MATCH_MP_TAC FINITE_SUBSET); (EXISTS_TAC `{v0, v1, v2, v3:real^3}`); (REWRITE_TAC[Geomdetail.FINITE6] THEN SET_TAC[]); (REWRITE_TAC[ARITH_RULE `~(a = 0) <=> 1 <= a`]); (NEW_GOAL `CARD ({v0, v1, v2, v3} DIFF {u0, u1,v:real^3}) = CARD {v0, v1, v2, v3} - CARD {u0,u1,v}`); (MATCH_MP_TAC CARD_DIFF); (ASM_REWRITE_TAC[Geomdetail.FINITE6]); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN REWRITE_WITH `CARD ({v0, v1, v2, v3:real^3}) = 3 + 1`); (REWRITE_WITH `{v0, v1, v2, v3:real^3} = set_of_list ul`); (ASM_REWRITE_TAC[set_of_list]); (REWRITE_WITH `LENGTH (ul:(real^3)list) = 3 + 1 /\ CARD (set_of_list ul) = 3 + 1`); (MATCH_MP_TAC Rogers.BARV_IMP_LENGTH_EQ_CARD); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (NEW_GOAL `CARD {u0, u1, v:real^3} <= 3`); (REWRITE_TAC[Geomdetail.CARD3]); (UP_ASM_TAC THEN ARITH_TAC); (UP_ASM_TAC THEN STRIP_TAC); (EXISTS_TAC `v:real^3` THEN EXISTS_TAC `w:real^3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN SET_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (REWRITE_TAC[GSYM (ASSUME `{u0:real^3, u1, v, w} = {v0, v1, v2, v3}`)]); (MATCH_MP_TAC CONIC_CAP_INTER_CONVEX_HULL_4_GT_0); (ASM_REWRITE_TAC[]); (STRIP_TAC); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (STRIP_TAC); (UNDISCH_TAC `~NULLSET x`); (SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list; ARITH_RULE `4 >= 4`; ASSUME `x = mcell i V ul`; ASSUME `i = 4`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (COND_CASES_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull {v0, v1, v2, v3:real^3}`); (REWRITE_TAC[CONVEX_HULL_SUBSET_AFFINE_HULL]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (ASM_REWRITE_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET x`); (SIMP_TAC[MCELL_EXPLICIT; mcell4; set_of_list; ARITH_RULE `4 >= 4`; ASSUME `x = mcell i V ul`; ASSUME `i = 4`; ASSUME `ul = [v0; v1; v2; v3:real^3]`]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (NEW_GOAL `vol (x INTER D) = &0`); (MATCH_MP_TAC MEASURE_EQ_0); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (* ========================================== *) (NEW_GOAL `i = 2`); (UNDISCH_TAC `i <= 4` THEN UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN ARITH_TAC); (NEW_GOAL `vol (x INTER D) > &0`); (ONCE_REWRITE_TAC[SET_RULE `a INTER b = b INTER a`]); (NEW_GOAL `?v0 v1 v2 v3. ul = [v0; v1; v2 ;v3:real^3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool` THEN ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN STRIP_TAC); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2; TRUNCATE_SIMPLEX_EXPLICIT_1; set_of_list; HD; TL]); (LET_TAC); (COND_CASES_TAC); (NEW_GOAL `i - 1 = 1`); (UNDISCH_TAC `i = 2` THEN ARITH_TAC); (UNDISCH_TAC `u0 IN VX V x /\ u1 IN VX V x`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1; set_of_list]); (STRIP_TAC); (NEW_GOAL `{u0, u1} = {v0, v1:real^3}`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UNDISCH_TAC `~(u0 = u1:real^3)` THEN SET_TAC[]); (REWRITE_TAC[SET_RULE `A INTER B INTER C INTER D = (A INTER (B INTER C)) INTER D`]); (REWRITE_WITH `rcone_ge v0 v1 a' INTER rcone_ge v1 v0 a' = rcone_ge u0 u1 a' INTER rcone_ge u1 (u0:real^3) a'`); (ASM_CASES_TAC `u0:real^3 = v0`); (NEW_GOAL `u1 = v1:real^3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (ASM_REWRITE_TAC[]); (NEW_GOAL `u0 = v1:real^3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (NEW_GOAL `u1 = v0:real^3`); (UP_ASM_TAC THEN UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (ASM_REWRITE_TAC[]); (SET_TAC[]); (REWRITE_WITH `conic_cap u0 u1 r d INTER rcone_ge u0 u1 a' INTER rcone_ge u1 u0 a' = conic_cap (u0:real^3) u1 r d`); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> A INTER B = A`)); (NEW_GOAL `conic_cap (u0:real^3) u1 r d SUBSET rcone_ge u0 u1 a'`); (REWRITE_TAC[conic_cap]); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A SUBSET B`)); (NEW_GOAL `rcone_gt u0 u1 d SUBSET rcone_gt (u0:real^3) u1 a'`); (MATCH_MP_TAC RCONE_GT_SUBSET); (EXPAND_TAC "d" THEN EXPAND_TAC "c"); (MATCH_MP_TAC (REAL_ARITH `a = x ==> a <= max (max y x) (max z t)`)); (EXPAND_TAC "a'" THEN REWRITE_TAC[HL; set_of_list] THEN ASM_REWRITE_TAC[]); (NEW_GOAL `rcone_gt u0 u1 a' SUBSET rcone_ge (u0:real^3) u1 a'`); (REWRITE_TAC[RCONE_GT_SUBSET_RCONE_GE]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (REWRITE_TAC[SUBSET_INTER] THEN STRIP_TAC); (ASM_REWRITE_TAC[]); (REWRITE_TAC[SUBSET]); (REPEAT STRIP_TAC); (MATCH_MP_TAC Marchal_cells_2_new.RCONEGE_INTER_VORONOI_CLOSED_IMP_RCONEGE); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (REPEAT STRIP_TAC); (REWRITE_WITH `a' = hl [u0; u1:real^3] / sqrt (&2)`); (EXPAND_TAC "a'"); (REWRITE_TAC[HL; set_of_list] THEN ASM_REWRITE_TAC[]); (MATCH_MP_TAC REAL_LT_DIV); (REWRITE_TAC[HL_2]); (STRIP_TAC); (MATCH_MP_TAC REAL_LT_MUL); (REWRITE_TAC[REAL_ARITH `&0 < inv (&2)`]); (MATCH_MP_TAC DIST_POS_LT); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SQRT_POS_LT); (REAL_ARITH_TAC); (EXPAND_TAC "a'"); (MATCH_MP_TAC REAL_DIV_LE_1_TACTICS); (STRIP_TAC); (MATCH_MP_TAC SQRT_POS_LT); (REAL_ARITH_TAC); (MATCH_MP_TAC (REAL_ARITH `a < b ==> a <= b`)); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (NEW_GOAL `x':real^3 IN ball (u0, (&1))`); (UP_ASM_TAC THEN REWRITE_TAC[conic_cap;NORMBALL_BALL] THEN STRIP_TAC); (NEW_GOAL `ball (u0, r) SUBSET ball (u0:real^3, &1)`); (MATCH_MP_TAC SUBSET_BALL); (EXPAND_TAC "r"); (REAL_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN SET_TAC[]); (UP_ASM_TAC THEN REWRITE_TAC[IN_BALL] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN STRIP_TAC); (REWRITE_TAC[voronoi_closed; IN; IN_ELIM_THM]); (REPEAT STRIP_TAC); (ASM_CASES_TAC `u0 = w:real^3`); (ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC); (NEW_GOAL `&2 <= dist (u0, w:real^3)`); (UNDISCH_TAC `packing (V:real^3->bool)` THEN REWRITE_TAC[packing]); (STRIP_TAC); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (UNDISCH_TAC `u0:real^3 IN V` THEN REWRITE_TAC[IN]); (NEW_GOAL `dist (x', u0) >= dist (u0, w) - dist (x', w:real^3)`); (NORM_ARITH_TAC); (UP_ASM_TAC THEN UP_ASM_TAC THEN DEL_TAC THEN DEL_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (ABBREV_TAC `M = mxi V [v0; v1; v2; v3]`); (ABBREV_TAC `R = omega_list_n V [v0; v1; v2; v3] 3`); (NEW_GOAL `vol (conic_cap u0 u1 r d INTER convex hull {v0:real^3,v1,M,R}) <= vol (conic_cap u0 u1 r d INTER aff_ge {v0, v1} {M, R})`); (MATCH_MP_TAC MEASURE_SUBSET); (REPEAT STRIP_TAC); (MATCH_MP_TAC MEASURABLE_INTER); (REWRITE_TAC[MEASURABLE_CONIC_CAP]); (MATCH_MP_TAC MEASURABLE_CONVEX_HULL); (MATCH_MP_TAC FINITE_IMP_BOUNDED); (REWRITE_TAC[Geomdetail.FINITE6]); (REWRITE_TAC[conic_cap; NORMBALL_BALL]); (ONCE_REWRITE_TAC[SET_RULE `(a INTER b) INTER c = (a INTER b) INTER (a INTER c)`]); (MATCH_MP_TAC MEASURABLE_INTER); (REWRITE_TAC[MEASURABLE_BALL_AFF_GE]); (REWRITE_TAC[GSYM conic_cap; GSYM NORMBALL_BALL; MEASURABLE_CONIC_CAP]); (MATCH_MP_TAC (SET_RULE `A SUBSET B ==> C INTER A SUBSET C INTER B`)); (REWRITE_TAC[Marchal_cells_2_new.CONVEX_HULL_4_SUBSET_AFF_GE_2_2]); (NEW_GOAL `vol (conic_cap u0 u1 r d INTER convex hull {v0, v1, M, R}) > &0`); (REWRITE_WITH `{v0, v1, M, R} = {u0, u1, M, R:real^3}`); (UNDISCH_TAC `{u0, u1} = {v0, v1:real^3}` THEN SET_TAC[]); (MATCH_MP_TAC CONIC_CAP_INTER_CONVEX_HULL_4_GT_0); (ASM_REWRITE_TAC[]); (REPEAT STRIP_TAC); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (UNDISCH_TAC `~NULLSET x`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (LET_TAC); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `aff_ge {v0, v1} {M, R:real^3}`); (REWRITE_TAC[SET_RULE `a INTER B INTER c SUBSET c`]); (MATCH_MP_TAC NEGLIGIBLE_SUBSET); (EXISTS_TAC `affine hull ({v0, v1} UNION {M, R:real^3})`); (REWRITE_TAC[AFF_GE_SUBSET_AFFINE_HULL; SET_RULE `{a, b} UNION {c, d} = {a,b,c,d}`]); (MATCH_MP_TAC COPLANAR_IMP_NEGLIGIBLE); (REWRITE_TAC[COPLANAR_AFFINE_HULL_COPLANAR]); (REWRITE_WITH `{v0, v1, M, R} = {u0, u1, M, R:real^3}`); (UNDISCH_TAC `{u0, u1} = {v0, v1:real^3}` THEN SET_TAC[]); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (NEW_GOAL `F`); (UNDISCH_TAC `~NULLSET x`); (ASM_REWRITE_TAC[MCELL_EXPLICIT; mcell2; set_of_list; TRUNCATE_SIMPLEX_EXPLICIT_1; HD; TL]); (REWRITE_TAC[NEGLIGIBLE_EMPTY]); (UP_ASM_TAC THEN MESON_TAC[]); (NEW_GOAL `vol (x INTER D) = &0`); (MATCH_MP_TAC MEASURE_EQ_0); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (* ========================================== *) (REWRITE_WITH `sum t (\t. vol (t INTER D)) = sum t (\t. vol D * dihX V t (u0,u1) / (&2 * pi))`); (MATCH_MP_TAC SUM_EQ); (EXPAND_TAC "t" THEN REWRITE_TAC[IN_ELIM_THM; IN] THEN REPEAT STRIP_TAC); (ASM_SIMP_TAC[]); (REWRITE_TAC[REAL_ARITH `a * b / c = (a / c) * b`]); (REWRITE_TAC[SUM_LMUL]); (ABBREV_TAC `R = sum t (\t. dihX V t (u0,u1))`); (REWRITE_TAC[REAL_ARITH `a / b * c = (a * c) / b`]); (REWRITE_WITH `(vol D * R) / (&2 * pi) = vol D <=> (vol D * R) = vol D * (&2 * pi)`); (MATCH_MP_TAC REAL_EQ_LDIV_EQ); (MATCH_MP_TAC REAL_LT_MUL); (REWRITE_TAC[PI_POS]); (REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `a * b = a * c <=> a * (b - c) = &0`]); (REWRITE_TAC[REAL_ENTIRE]); (STRIP_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN ASM_REWRITE_TAC[]); (NEW_GOAL `&0 < d`); (EXPAND_TAC "d" THEN UNDISCH_TAC `&0 < c /\ c < &1` THEN REAL_ARITH_TAC); (ASM_SIMP_TAC[VOLUME_CONIC_CAP]); (COND_CASES_TAC); (REWRITE_TAC[]); (UNDISCH_TAC `d < &1` THEN UNDISCH_TAC `&0 < r` THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (REWRITE_TAC[REAL_ARITH `&2 / &3 * a = &0 <=> a = &0`]); (REWRITE_TAC[REAL_ENTIRE]); (NEW_GOAL `~(pi = &0)`); (MP_TAC PI_POS THEN REAL_ARITH_TAC); (NEW_GOAL `~(&1 - d = &0)`); (UNDISCH_TAC `d < &1` THEN REAL_ARITH_TAC); (NEW_GOAL `~(r pow 3 = &0)`); (MATCH_MP_TAC REAL_POW_NZ); (UNDISCH_TAC `&0 < r` THEN REAL_ARITH_TAC); (ASM_REWRITE_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN REAL_ARITH_TAC)]);;