(* ========================================================================= *)
(* Definability in arithmetic of important notions. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Pairing operation. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Decreasingness. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts needed. NB: these are Delta so can be negated freely. *)
(* ------------------------------------------------------------------------- *)
let primepow_DELTA = prove
(`
primepow p x <=>
prime(p) /\ ~(x = 0) /\
!z. z <= x ==> z
divides x ==> z = 1 \/ p
divides z`,
REWRITE_TAC[
primepow; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN
ASM_CASES_TAC `
prime(p)` THEN
ASM_REWRITE_TAC[] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
ASM_REWRITE_TAC[
EXP_EQ_0] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[
PRIME_0]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `z:num` o MATCH_MP
PRIME_COPRIME) THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `p
divides z` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[
COPRIME_SYM] THEN
DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP
COPRIME_EXP) THEN
ASM_MESON_TAC[
COPRIME;
DIVIDES_REFL];
SPEC_TAC(`x:num`,`x:num`) THEN MATCH_MP_TAC
num_WF THEN
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = 1` THENL
[EXISTS_TAC `0` THEN ASM_REWRITE_TAC[
EXP]; ALL_TAC] THEN
FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP
PRIME_FACTOR) THEN
STRIP_TAC THEN
UNDISCH_TAC `!z. z <= x ==> z
divides x /\ ~(z = 1) ==> p
divides z` THEN
DISCH_THEN(fun
th -> ASSUME_TAC
th THEN MP_TAC
th) THEN
DISCH_THEN(MP_TAC o SPEC `q:num`) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `q = 1` THENL [ASM_MESON_TAC[
PRIME_1]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `q <= x` ASSUME_TAC THENL
[ASM_MESON_TAC[
DIVIDES_LE]; ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `p
divides x` MP_TAC THENL
[ASM_MESON_TAC[
DIVIDES_TRANS]; ALL_TAC] THEN
REWRITE_TAC[
divides] THEN DISCH_THEN(X_CHOOSE_TAC `y:num`) THEN
SUBGOAL_THEN `y < x` (ANTE_RES_THEN MP_TAC) THENL
[MATCH_MP_TAC
PRIME_FACTOR_LT THEN
EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `y = 0` THENL
[UNDISCH_TAC `x = p * y` THEN ASM_REWRITE_TAC[
MULT_CLAUSES]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!z. z <= y ==> z
divides y /\ ~(z = 1) ==> p
divides z`
(fun
th -> REWRITE_TAC[
th]) THENL
[REPEAT STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE
[IMP_IMP]) THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `y:num` THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `y = 1 * y`] THEN
REWRITE_TAC[
LE_MULT_RCANCEL] THEN
ASM_REWRITE_TAC[GSYM
NOT_LT] THEN
REWRITE_TAC[num_CONV `1`;
LT; DE_MORGAN_THM] THEN
ASM_MESON_TAC[
PRIME_0;
PRIME_1];
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
DIVIDES_LMUL THEN
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[]];
DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[
EXP]]]);;
(* ------------------------------------------------------------------------- *)
(* Sigma-representability of reflexive transitive closure. *)
(* ------------------------------------------------------------------------- *)
let PSEQ = new_recursive_definition num_RECURSION
`(PSEQ p f m 0 = 0) /\
(PSEQ p f m (SUC n) = f m + p * PSEQ p f (SUC m) n)`;;
let PSEQ_BOUND = prove
(`!n. ~(p = 0) /\ (!i. i < n ==> f i < p) ==>
PSEQ p f 0 n < p
EXP n`,
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN
INDUCT_TAC THENL [REWRITE_TAC[
PSEQ;
EXP; ARITH]; ALL_TAC] THEN
DISCH_TAC THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`]
PSEQ_SPLIT) THEN
SIMP_TAC[
ADD1;
ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC
LTE_TRANS THEN
EXISTS_TAC `p
EXP n + p
EXP n *
PSEQ p f n 1` THEN
ASM_SIMP_TAC[
LT_ADD_RCANCEL; ARITH_RULE `i < n ==> i < SUC n`] THEN
REWRITE_TAC[ARITH_RULE `p + p * q = p * (q + 1)`] THEN
ASM_REWRITE_TAC[
EXP_ADD;
LE_MULT_LCANCEL;
EXP_EQ_0] THEN
MATCH_MP_TAC(ARITH_RULE `x < p ==> x + 1 <= p`) THEN
ASM_SIMP_TAC[
EXP_1;
PSEQ_1;
LT]);;
let RELPOW_LEMMA_1 = prove
(`(f 0 = x) /\
(f n = y) /\
(!i. i < n ==> R (f i) (f(SUC i)))
==> ?p. (?i. i <= n /\ p <= SUC(
FACT(f i))) /\
prime p /\
(?m. m < p
EXP (SUC n) /\
x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p
EXP n /\ (m = ry + p
EXP n * y)) /\
!q. q < p
EXP n
==>
primepow p q
==> ?r. r < q /\
?a. a < p /\
?b. b < p /\
R a b /\
?s. s <= m /\
(m =
r + q * (a + p * (b + p * s))))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?j. j <= n /\ !i. i <= n ==> f i <= f j` MP_TAC THENL
[SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
INDUCT_TAC THENL
[SIMP_TAC[
LE] THEN MESON_TAC[
LE_REFL]; ALL_TAC] THEN
FIRST_ASSUM(X_CHOOSE_THEN `j:num` STRIP_ASSUME_TAC) THEN
DISJ_CASES_TAC(ARITH_RULE `f(SUC n) <= f(j) \/ f(j) <= f(SUC n)`) THENL
[EXISTS_TAC `j:num` THEN
ASM_SIMP_TAC[ARITH_RULE `j <= n ==> j <= SUC n`] THEN
REWRITE_TAC[
LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[];
EXISTS_TAC `SUC n` THEN REWRITE_TAC[
LE_REFL] THEN
REWRITE_TAC[
LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[
LE_REFL] THEN ASM_MESON_TAC[
LE_TRANS]];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `ibig:num` STRIP_ASSUME_TAC) THEN
MP_TAC(SPEC `(f:num->num) ibig`
EUCLID_BOUND) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `p:num` THEN CONJ_TAC THENL
[EXISTS_TAC `ibig:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[
PRIME_0]; ALL_TAC] THEN
CONJ_TAC THENL [FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!i. i <= n ==> f i < p` ASSUME_TAC THENL
[ASM_MESON_TAC[
LET_TRANS]; ALL_TAC] THEN
EXISTS_TAC `
PSEQ p f 0 (SUC n)` THEN CONJ_TAC THENL
[MATCH_MP_TAC
PSEQ_BOUND THEN ASM_SIMP_TAC[
LT_SUC_LE]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[
LE_0]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[
LE_REFL]; ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[
PSEQ] THEN MESON_TAC[];
MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[
ADD1;
ADD_CLAUSES] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `
PSEQ p f 0 n` THEN
ASM_SIMP_TAC[
PSEQ_BOUND;
PSEQ_1;
LT_IMP_LE];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
ASM_SIMP_TAC[
primepow;
LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN X_GEN_TAC `i:num` THEN DISCH_THEN(K ALL_TAC) THEN
ASM_REWRITE_TAC[
LT_EXP] THEN STRIP_TAC THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `i:num`; `0`; `SUC n - i`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (i + SUC n - i = SUC n)`] THEN
DISCH_THEN(K ALL_TAC) THEN
EXISTS_TAC `
PSEQ p f 0 i` THEN REWRITE_TAC[
EQ_ADD_LCANCEL] THEN
ASM_REWRITE_TAC[
EQ_MULT_LCANCEL;
EXP_EQ_0;
ADD_CLAUSES] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[
PSEQ_BOUND;
LT_TRANS;
LT_IMP_LE]; ALL_TAC] THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i:num`; `n - i`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i = SUC n - i)`] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `
PSEQ p f i 1` THEN
ASM_REWRITE_TAC[
EQ_ADD_LCANCEL;
EQ_MULT_LCANCEL;
EXP_1] THEN
ASM_SIMP_TAC[
PSEQ_1;
LT_IMP_LE] THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i + 1`; `n - i - 1`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i - 1 = n - i)`] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `
PSEQ p f (i + 1) 1` THEN
ASM_REWRITE_TAC[
EQ_ADD_LCANCEL;
EQ_MULT_LCANCEL;
EXP_1] THEN
ASM_SIMP_TAC[
PSEQ_1; ARITH_RULE `i < n ==> i + 1 <= n`] THEN
ASM_SIMP_TAC[GSYM
ADD1] THEN REWRITE_TAC[
ADD1] THEN
ONCE_REWRITE_TAC[
CONJ_SYM] THEN REWRITE_TAC[
UNWIND_THM1] THEN
REWRITE_TAC[
LEFT_ADD_DISTRIB;
MULT_ASSOC;
ADD_ASSOC] THEN
MATCH_MP_TAC(ARITH_RULE `1 * a <= c ==> a <= b + c`) THEN
REWRITE_TAC[
LE_MULT_RCANCEL] THEN DISJ1_TAC THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`;
MULT_EQ_0;
EXP_EQ_0]);;
let RELPOW_LEMMA_2 = prove
(`
prime p /\ x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p
EXP n /\ (m = ry + p
EXP n * y)) /\
(!q. q < p
EXP n
==>
primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b)
==>
RELPOW n R x y`,
STRIP_TAC THEN REWRITE_TAC[
RELPOW_SEQUENCE] THEN
EXISTS_TAC `\i. (m DIV (p
EXP i)) MOD p` THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[
PRIME_0]; ALL_TAC] THEN
REWRITE_TAC[
EXP; DIV_1] THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC
MOD_UNIQ THEN EXISTS_TAC `qx:num` THEN
ASM_REWRITE_TAC[
ADD_AC;
MULT_AC];
MATCH_MP_TAC
MOD_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[ASSUME `y < p`;
MULT_CLAUSES;
ADD_CLAUSES] THEN
MATCH_MP_TAC
DIV_UNIQ THEN EXISTS_TAC `ry:num` THEN
REWRITE_TAC[ASSUME `m = ry + p
EXP n * y`] THEN
ASM_REWRITE_TAC[
ADD_AC;
MULT_AC];
ALL_TAC] THEN
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p
EXP i`) THEN
ASM_SIMP_TAC[
LT_EXP;
PRIME_GE_2] THEN
ASM_REWRITE_TAC[
primepow] THEN
W(C SUBGOAL_THEN (fun
th -> REWRITE_TAC[
th]) o funpow 2 lhand o snd) THENL
[MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `(R:num->num->bool) a b` THEN
MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN BINOP_TAC THENL
[MATCH_MP_TAC
MOD_UNIQ THEN EXISTS_TAC `b + p * s` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
DIV_UNIQ THEN EXISTS_TAC `r:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
ADD_AC;
MULT_AC];
MATCH_MP_TAC
MOD_UNIQ THEN EXISTS_TAC `s:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
DIV_UNIQ THEN EXISTS_TAC `r + a * p
EXP i` THEN
CONJ_TAC THENL
[REWRITE_TAC[
LEFT_ADD_DISTRIB;
RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[
ADD_AC;
MULT_AC]; ALL_TAC] THEN
MATCH_MP_TAC
LTE_TRANS THEN EXISTS_TAC `p
EXP i + a * p
EXP i` THEN
ASM_REWRITE_TAC[
LT_ADD_RCANCEL] THEN
REWRITE_TAC[ARITH_RULE `p + q * p = (q + 1) * p`] THEN
ASM_REWRITE_TAC[
LE_MULT_RCANCEL;
EXP_EQ_0] THEN
UNDISCH_TAC `a < p` THEN ARITH_TAC]);;
let RELPOW_LEMMA = prove
(`
RELPOW n R x y <=>
?m p.
prime p /\ x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p
EXP n /\ (m = ry + p
EXP n * y)) /\
!q. q < p
EXP n
==>
primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b`,
let RTC_SIGMA = prove
(`
RTC R x y <=>
?m p Q.
primepow p Q /\ x < p /\ y < p /\
(?s. m = x + p * s) /\
(?r. r < Q /\ (m = r + Q * y)) /\
!q. q < Q
==>
primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b`,
(* ------------------------------------------------------------------------- *)
(* Partially automate actual definability in object language. *)
(* ------------------------------------------------------------------------- *)
let OBJECTIFY =
let is_add = is_binop `(+):num->num->num`
and is_mul = is_binop `(*):num->num->num`
and is_le = is_binop `(<=):num->num->bool`
and is_lt = is_binop `(<):num->num->bool`
and zero_tm = `0`
and suc_tm = `SUC`
and osuc_tm = `Suc`
and oz_tm = `Z`
and ov_tm = `V`
and oadd_tm = `(++)`
and omul_tm = `(**)`
and oeq_tm = `(===)`
and ole_tm = `(<<=)`
and olt_tm = `(<<)`
and oiff_tm = `(<->)`
and oimp_tm = `(-->)`
and oand_tm = `(&&)`
and oor_tm = `(||)`
and onot_tm = `Not`
and oall_tm = `!!`
and oex_tm = `??`
and numeral_tm = `numeral`
and assign_tm = `(|->):num->term->(num->term)->(num->term)`
and term_ty = `:term`
and form_ty = `:form`
and num_ty = `:num`
and formsubst_tm = `formsubst`
and holdsv_tm = `holds v`
and v_tm = `v:num->num` in
let objectify1 fn op env tm = mk_comb(op,fn env (rand tm)) in
let objectify2 fn op env tm =
mk_comb(mk_comb(op,fn env (lhand tm)),fn env (rand tm)) in
fun defs ->
let defs' = [TERMVAL_NUMERAL; ARITH_PAIR] @ defs in
let rec objectify_term env tm =
if is_var tm then mk_comb(ov_tm,apply env tm)
else if tm = zero_tm then oz_tm
else if is_numeral tm then mk_comb(numeral_tm,tm)
else if is_add tm then objectify2 objectify_term oadd_tm env tm
else if is_mul tm then objectify2 objectify_term omul_tm env tm
else if is_comb tm & rator tm = suc_tm
then objectify1 objectify_term osuc_tm env tm
else
let f,args = strip_comb tm in
let args' = map (objectify_term env) args in
try let dth = find
(fun th -> fst(strip_comb(rand(snd(strip_forall(concl th))))) = f)
defs' in
let l,r = dest_eq(snd(strip_forall(concl dth))) in
list_mk_comb(fst(strip_comb(rand l)),args')
with Failure _ ->
let ty = itlist (mk_fun_ty o type_of) args' form_ty in
let v = mk_var(fst(dest_var f),ty) in
list_mk_comb(v,args') in
let rec objectify_formula env fm =
if is_forall fm then
let x,bod = dest_forall fm in
let n = mk_small_numeral
(itlist (max o dest_small_numeral) (ran env) 0 + 1) in
mk_comb(mk_comb(oall_tm,n),objectify_formula ((x |-> n) env) bod)
else if is_exists fm then
let x,bod = dest_exists fm in
let n = mk_small_numeral
(itlist (max o dest_small_numeral) (ran env) 0 + 1) in
mk_comb(mk_comb(oex_tm,n),objectify_formula ((x |-> n) env) bod)
else if is_iff fm then objectify2 objectify_formula oiff_tm env fm
else if is_imp fm then objectify2 objectify_formula oimp_tm env fm
else if is_conj fm then objectify2 objectify_formula oand_tm env fm
else if is_disj fm then objectify2 objectify_formula oor_tm env fm
else if is_neg fm then objectify1 objectify_formula onot_tm env fm
else if is_le fm then objectify2 objectify_term ole_tm env fm
else if is_lt fm then objectify2 objectify_term olt_tm env fm
else if is_eq fm then objectify2 objectify_term oeq_tm env fm
else objectify_term env fm in
fun nam th ->
let ptm,tm = dest_eq(snd(strip_forall(concl th))) in
let vs = filter (fun v -> type_of v = num_ty) (snd(strip_comb ptm)) in
let ns = 1--(length vs) in
let env = itlist2 (fun v n -> v |-> mk_small_numeral n) vs ns undefined in
let otm = objectify_formula env tm in
let vs' = map (fun v -> mk_var(fst(dest_var v),term_ty)) vs in
let stm = itlist2
(fun v n a -> mk_comb(mk_comb(mk_comb(assign_tm,mk_small_numeral
n),v),a))
vs' ns ov_tm in
let rside = mk_comb(mk_comb(formsubst_tm,stm),otm) in
let vs'' = subtract (frees rside) vs' @ vs' in
let lty = itlist (mk_fun_ty o type_of) vs'' (type_of rside) in
let lside = list_mk_comb(mk_var(nam,lty),vs'') in
let def = mk_eq(lside,rside) in
(* ------------------------------------------------------------------------- *)
(* Some sort of common tactic for free variables. *)
(* ------------------------------------------------------------------------- *)
let FV_TAC ths =
let ths' = ths @
[FV; FORMSUBST_FV; FVT; TERMSUBST_FVT; IN_ELIM_THM;
NOT_IN_EMPTY; IN_UNION; IN_DELETE; IN_SING]
and tac =
REWRITE_TAC[DISJ_ACI; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN
REWRITE_TAC[valmod; ARITH_EQ; FVT] THEN REWRITE_TAC[DISJ_ACI] in
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
ASM_REWRITE_TAC ths' THEN tac THEN ASM_SIMP_TAC ths' THEN tac;;
(* ------------------------------------------------------------------------- *)
(* So do the formula-level stuff (more) automatically. *)
(* ------------------------------------------------------------------------- *)
let arith_divides,ARITH_DIVIDES =
OBJECTIFY [] "arith_divides" divides_DELTA;;
let arith_prime,ARITH_PRIME =
OBJECTIFY [ARITH_DIVIDES] "arith_prime" prime_DELTA;;
let arith_primepow,ARITH_PRIMEPOW =
OBJECTIFY [ARITH_PRIME; ARITH_DIVIDES] "arith_primepow" primepow_DELTA;;
let arith_rtc,ARITH_RTC =
OBJECTIFY
[ARITH_PRIMEPOW;
ASSUME `!v s t. holds v (R s t) <=> r (termval v s) (termval v t)`]
"arith_rtc" RTC_SIGMA;;
(* ------------------------------------------------------------------------- *)
(* Automate RTC constructions, including parametrized ones. *)
(* ------------------------------------------------------------------------- *)
let OBJECTIFY_RTC =
let RTCP_SIGMA = REWRITE_RULE[GSYM RTCP]
(INST [`(R:num->num->num->bool) m`,`R:num->num->bool`] RTC_SIGMA);;
let arith_rtcp,ARITH_RTCP =
OBJECTIFY
[ARITH_PRIMEPOW;
ASSUME `!v m s t. holds v (R m s t) <=>
r (termval v m) (termval v s) (termval v t)`]
"arith_rtcp" RTCP_SIGMA;;
let ARITH_RTC_PARAMETRIZED = REWRITE_RULE[RTCP] ARITH_RTCP;;
let OBJECTIFY_RTCP =
(* ------------------------------------------------------------------------- *)
(* Generic result about primitive recursion. *)
(* ------------------------------------------------------------------------- *)